Ir al contenido

Documat


Breather Transitions and Their Mechanisms of a (2+1)-Dimensional Sine-Gordon Equation and a Modified Boussinesq Equation in Nonlinear Dynamics

  • Qian Gao [1] ; Shou-Fu Tian [1] ; Ji-Chuan Liu [1] ; Yan-Qiang Wu [1]
    1. [1] China University of Mining and Technology

      China University of Mining and Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Studying the transformation mechanisms of soliton solutions of some high-dimensional equations can aid in comprehending the physical phenomena of the relevant nonlinear wave interactions. Therefore, the transitions and mechanisms of nonlinear waves in the (2+1)-dimensional sine-Gordon and (2+1)-dimensional modified Boussinesq equations are investigated for the first time by means of characteristic line and phase shift analysis, and the dynamic behavior of various nonlinear transformed waves is analyzed. Firstly, we derive the N-soliton solution by applying the Hirota bilinear method, from which the breather solution is constructed by changing the parameters into a complex form in pairs. In addition, via the characteristic-line analysis, we present the mechanism for the transformation of the breather solution, which is composed of the nonlinear superposition of a solitary wave and periodic wave. When the characteristic lines of the two parts are parallel, we find that various transformed nonlinear wave structures can be obtained, such as M-type solitons, oscillating M-type solitons, multi-peak solitons, quasi-sine waves and so on. Finally, we demonstrate that the geometric properties of the characteristic lines vary with time essentially resulting in the time-varying properties of nonlinear waves, which have never been found in (1+1)-dimensional systems. Overall, the study of breath-wave transitions in the (2+1)-dimensional sine-Gordon equation and the modified Boussinesq equation provides valuable insights into the bahavior of nonlinear systems and wave propagation.

  • Referencias bibliográficas
    • 1. Lamb, G.L.: Elements of soliton theory. Adv. Math. 32(7), 215 (1981)
    • 2. Camassa, R., Hyman, J.M., Luce, B.P.: Nonlinear waves and solitons in physical systems. Phys. D 123, 1–20 (1998)
    • 3. Ahmad, J., Akram, S., Noor, K., Nadeem, M., Bucur, A., Alsayaad, Y.: Soliton solutions of fractional extended nonlinear Schrödinger equation...
    • 4. Gao, X.Y.: Oceanic shallow-water investigations on a generalized Whitham-Broer-Kaup-BoussinesqKupershmidt system. Phys. Fluids 35, 127106...
    • 5. Gao, X.Y., Guo, Y.J., Shan, W.R.: Ultra-short optical pulses in a birefringent fiber via a generalized coupled Hirota system with the singular...
    • 6. Gao, X.Y.: Letter to the Editor on the Korteweg-de Vries-type systems inspired by Results Phys. 51, 106624 (2023) and 50, 106566 (2023)....
    • 7. Gao, X.Y.: Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2+1)-dimensional...
    • 8. Gao, X.Y.: Two-layer-liquid and lattice considerations through a (3+1)-dimensional generalized YuToda-Sasa- Fukuyama system. Appl....
    • 9. Gao, X.T., Tian, B.: Water-wave studies on a (2+1)-dimensional generalized variable-coefficient BoitiLeon-Pempinelli system. Appl....
    • 10. Russell, J.S.: Report on waves. Report of fourteenth meeting of British Association for the Advancement of Science, pp.311–390. John Murray,...
    • 11. Korteweg, D.J., Vries, G.D.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary...
    • 12. Zabusky, N.J., Kruskal, M.D.: Interaction of “Solitons" in a Collisionless Plasma and the Recurrence of Initial States. Phys. Rev....
    • 13. Rehman, H.U., Said, G.S., Amer, A., Ashraf, H., et al.: Unraveling the (4+1)-dimensional DaveyStewartson-Kadomtsev-Petviashvili equation:...
    • 14. Dey, P.S., Lamiaa, H., Tharwat, M.M., Sarker, S., et al.: Soliton solutions to generalized (3+1)- dimensional shallow water-like equation...
    • 15. Dhosseini, K., Alizadeh, F., Sadri, K., et al.: Lie vector fields, conservation laws, bifurcation analysis, and Jacobi elliptic solutions...
    • 16. Rasid, M.M., Miah, M.M., Ganie, A.H., et al.: Further advanced investigation of the complex Hirotadynamical model to extract soliton solutions....
    • 17. Malik, S., Hashemi,M.S., Kumar, S., et al.: Application of new Kudryashov method to various nonlinear partial differential equations....
    • 18. Raza, N., Osman, M.S., Abdel-Aty, A.H.: Optical solitons of space-time fractional Fokas-Lenells equation with two versatile integration...
    • 19. Akbar, M.A., Wazwaz, A.M., Mahmud, F., et al.: Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules...
    • 20. Chen, Y.Q., Tang, Y.H., Manafian, J., et al.: Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model. Nonlinear...
    • 21. Fahim, M.R.A., Kundu, P.R., Islam, M.E., et al.: Wave profile analysis of a couple of (3+1)-dimensional nonlinear evolution equations...
    • 22. Kumar, D., Park, C., Tamanna, N., Paul, G.C., Osman, M.S.: Dynamics of two-mode Sawada-Kotera equation: mathematical and graphical analysis...
    • 23. Ablowitz, M.A., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 3, pp. 2301–2305. Cambridge University...
    • 24. Zhou, T.Y., Tian, B., Shen, Y., Gao, X.T.: Auto-Bäcklund transformations and soliton solutions on the nonzero background for a (3+1)-dimensional...
    • 25. Celledoni, E., Marthinsen, H., Owren, B.: An introduction to Lie group integrators − basics, new developments and applications. J. Comput....
    • 26. Wu, X.H., Gao, Y.T.: Generalized Darboux transformation and solitons for the Ablowitz-Ladik equation in an electrical lattice. Appl. Math....
    • 27. Hietarinta, J.: Hirota’s Bilinear Method and its Generalization. Int. J. Mod. Phys. A 12(01), 43–51 (1997)
    • 28. Lin, Z., Wen, X.Y.: Hodograph transformation, various exact solutions and dynamical analysis for the complex Wadati-Konno-Ichikawa-II...
    • 29. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)
    • 30. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: Soliton resonances, soliton molecules, soliton oscillations and heterotypic solitons for the nonlinear...
    • 31. Ma, Y.L., Li, B.Q.: Phase transitions of lump wave solutions for a (2+1)-dimensional coupled Maccari system. Eur. Phys. J. Plus 139(1),...
    • 32. Ma, Y.L.,Wazwaz, A.M., Li, B.Q.: Phase transition from soliton to breather, soliton-breather molecules, breather molecules of the Caudrey-Dodd-Gibbon...
    • 33. Ma, Y.L., Li, B.Q.: Soliton interactions, soliton bifurcations and molecules, breather molecules, breather-to-soliton transitions, and...
    • 34. Li, B.Q., Ma, Y.L.: Breather, soliton molecules, soliton fusions and fissions, and lump wave of the Caudrey-Dodd-Gibbon equation. Phys....
    • 35. Li, B.Q., Ma, Y.L.: Hybrid soliton and breather waves, solution molecules and breather molecules of a (3+1)-dimensional Geng equation...
    • 36. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion....
    • 37. Kivshar, Y.S.: Nonlinear dynamics near the zero-dispersion point in optical fibers. Phys. Rev. Lett. 43(3), 1677 (1991)
    • 38. Li, Z., Li, L., Tian, H.: New types of solitary wave solutions for the higher order nonlinear Schrödinger equation. Phys. Rev. Lett. 84(18),...
    • 39. Liu, C., Yang, Z.Y., Zhao, L.C., et al.: State transition induced by higher-order effects and background frequency. Phys. Rev. E 91(2),...
    • 40. Shen, Y., Tian, B., Zhou, T.Y., Cheng, C.D.: Multi-pole solitons in an inhomogeneous multi-component nonlinear optical medium. Chaos Solitons...
    • 41. Lin, Z., Wen, X.Y.: Singular-loop rogue wave and mixed interaction solutions with location control parameters for Wadati-Konno-Ichikawa...
    • 42. Dai, C.Q., Zhu, H.P.: Superposed Akhmediev breather of the (3+1)-dimensional generalized nonlinear Schrödinger equation with external...
    • 43. Li, Z.D., Wu, X., Li, Q.Y., He, P.B.: Kuznetsov-Ma soliton and Akhmediev breather of higher-order nonlinear Schrödinger equation. Chin....
    • 44. Hermann, A.H., William, S.W.: Solitons in optical communications. Rev. Mod. Phys. 68(2), 423–444 (1996)
    • 45. An, H.L., Feng, D., Zhu, H.X.: General M-lump, high-order breather and localized interaction solutions to the 2+1-dimensional Sawada-Kotera...
    • 46. Jiang, L., Li, B.: Higher-order smooth positons and breather positons of sine-Gordon equation. Commun. Theor. Phys. 74(8), 085006 (2022)
    • 47. Ryabov, P.N.: Exact solutions of the Kudryashov-Sinelshchikov equation. Appl. Math. Comput 217(7), 3585–3590 (2010)
    • 48. Wu, J.J., Sun, Y.J., Li, B.: Degenerate lump chain solutions of (4+1)-dimensional Fokas equation. Results Phys. 45, 106243 (2023)
    • 49. Yang, S.X., Li, B.: ∂−-dressing method for the (2+1)-dimensional Korteweg-de Vries equation. Appl. Math. Lett. 140, 108589 (2023)
    • 50. Ma, W.X.: Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 379(36), 1975–1978 (2015)
    • 51. Pang, Y.M.: State transition of (2+1) dimensional Sawada-Kotera equation wave. Adv. Appl. Math. 10(5), 7 (2021)
    • 52. Yin, Z.Y., Tian, S.F.: Nonlinear wave transitions and their mechanisms of (2+1)-dimensional SawadaKotera equation. Phys. D 427, 133002...
    • 53. Chowdury, A., Ankiewicz, A., Akhmediev, N.: Moving breathers and breather-to-soliton conversions for the Hirota equation. Proc. R. Soc....
    • 54. Liu, C., Yang, Z.Y., Zhao, L.C., Yang, W.L.: State transition induced by higher-order effects and background frequency. Phys. Rev. E 91(2),...
    • 55. Wang, L., Zhang, J.H., Wang, Z.Q., et al.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability...
    • 56. Wang, C.J., Fang, H., Tang, X.X.: State transition of lump-type waves for the (2+1)-dimensional generalized KdV equation. Nonlinear...
    • 57. Rubinstein, J.: Sine-Gordon Equation. J. Math. Phys. 11(1), 258–266 (1970)
    • 58. Zhong, W.Y., Zhong, W.P., Milivoj, R.B., Cai, G.F.: Localized dynamical behavior in the (2+1)- dimensional sine-Gordon equation. Optik...
    • 59. Li, L.X., Su, T.: N-soliton Solution for a (2+1)-dimensional Modified Boussinesq Equation. Acta Math. Sci. 87(04), 757–759 (2007)
    • 60. Li, Z.T.: New kink-shaped solutions and periodic wave solutions for the (2+1)-dimensional sine-Gordon equation. Appl. Math. Comput....
    • 61. Martinov, N.K., Vitanov, N.K.: New class of running-wave solutions of the (2+1)-dimensional sineGordon equation. J. Phys. A 7(13),...
    • 62. Charlier, C., Lenells, J.: Boussinesq’s equation for water waves: asymptotics in sector V (2023) arXiv:2301.10669
    • 63. McKean, H.P.: Boussinesq’s equation on the circle. Commun. Pure Appl. Math. 34(5), 599–691 (1981)
    • 64. Moleleki, L.D., Khalique, C.M.: Solutions and conservation laws of a (2+1)-dimensional Boussinesq equation. Abstr. Appl. Anal. 2013,...
    • 65. Elsayed, S.M., Kaya, D.: The decomposition method for solving (2+1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation....
    • 66. Ma, C.H., Deng, A.P.: Lump Solution of (2+1)-dimensional Boussinesq equation. Commun. Theor. Phys. 65(5), 546 (2016)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno