Ir al contenido

Documat


Topological Entropy of Iterated Set-Valued Dynamical Systems

  • Autores: Xiaofang Luo
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01017-9
  • Enlaces
  • Resumen
    • This paper studies topological entropy and pseudo-entropy of iterated set-valued function systems. Firstly, the notions of topological entropy defined by separating and spanning sets and by open covers are introduced respectively, and they are proved equivalent, then a formula is obtained for the topological entropy of an iterated set-valued function system concerning the corresponding skew product system, and topological entropy of iterated set-valued function systems is a topological conjugacy invariant. Finally, the notions of pseudo-entropy of set-valued function systems and iterated set-valued function systems are introduced and it is proved that the pseudoentropy is equal to the topological entropy of iterated set-valued function systems.

  • Referencias bibliográficas
    • 1. Adler, R., Konheim, A., McAndrew, J.: Topological entropy. Trans. Am. Math. Soc. 114, 309–319 (1965)
    • 2. Aoki, N.: Topological dynamics. In: Morita, K., Nagata, J. (eds.) Topics in General Topology, pp. 625–740. Elsevier, Amsterdam (1989)
    • 3. Barge, M., Swanson, R.: Pseudo-orbits and topological entropy. Proc. Amer. Math. Soc. 109, 559–566 (1990)
    • 4. Bi´s, A.: Entropies of a semigroup of maps. Discrete Contin. Dyn. Syst. 11, 639–648 (2012)
    • 5. Bowen, R.: Entropy-expansive maps. Trans. Amer. Math. Soc. 164, 323–331 (1972)
    • 6. Bowen, R.: Entropy for group endomorphisms and homogenous spaces. Trans. Amer. Math. Soc. 153, 401–414 (1971)
    • 7. Bowen, R.: Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184, 125–136 (1973)
    • 8. Bufetov, A.: Topological entropy of free semigroup actions and skew-product transformations. J. Dyn. Control Syst. 5, 137–143 (1999)
    • 9. Carrasco-Olivera, D., Alvan, R.M., Rojas, C.A.M.: Topological entropy for set-valued maps. Discrete Contin. Dyn. Syst. Ser. B 20, 3461–3474...
    • 10. Corda, C., FatehiNia, M., Molaei, M.R., et al.: Entropy of iterated function systems and their relations with black holes and Bohr-like...
    • 11. Devaney, R.L., Eckmann, J.P.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Nonlinearity (1987)
    • 12. Feldman, J.: r-entropy, equipartition, and Ornstein’s isomorphism theorem in Rn. Israel J. Math. 36, 321–345 (1980)
    • 13. Feng, D.J., Huang, W.: Variational principles for topological entropies of subsets. J. Funct. Anal. 263, 2228–2254 (2012)
    • 14. Feng, D.J., Hu, H.: Dimension theory of iterated function systems. Comm. Pure Appl. Math. 62, 1435–1500 (2009)
    • 15. Ghane, F.H., Sarkooh, J.N.: On topological entropy and topological pressure of non-autonomous iterated function systems. J. Korean Math....
    • 16. Gottschalk, W.H., Hedlund, G.A.: Topological Dynamics. American Mathematical Society, American (1955)
    • 17. Gowri, S., Venkatachalam, M., Mishra, V.N., Mishra, L.N.: On r-dynamic coloring of double star graph families. Palest. J. Math. 10, 53–62...
    • 18. Kelly, J., Tennant, T.: Topological entropy on set-valued functions. Proc. Amer. Math. Soc. 43, 263–282 (2015)
    • 19. Kosti´c, M.: Chaos for Linear Operators and Abstract Differential Equations. Nova Science, New York (2020)
    • 20. Marco, J.P.: Polynomial entropies and integrable Hamiltonian systems. Regul Chaotic Dyn. 18, 623– 655 (2013)
    • 21. Misiurewicz, M.: Remark on the definition of topological entropy. Dynam. Syst. Part. Differ. Equ. (Caracas, 1984), Caracas, 65–67 (1986)
    • 22. Pathak, V.K., Mishra, L.N., Mishra, V.N.: On the solvability of a class of nonlinear functional integral equations involving Erdélyi–Kober...
    • 23. Paul, S.K., Mishra, L.N., Mishra, V.N., Baleanu, D.: Analysis of mixed type nonlinear Volterra– Fredholm integral equations involving...
    • 24. Paul, S.K., Mishra, L.N., Mishra, V.N., Baleanu, D.: An effective method for solving nonlinear integral equations involving the Riemann–Liouville...
    • 25. Ruelle, D.: Statistical mechanics on a compact set with Zv action satisfying expansiveness and specification. Trans. Amer. Math. Soc....
    • 26. Sharma, D.J., Kilicman, A., Mishra, L.N.: A new type of weak open sets via idealization in bitopological spaces. Malays. J. Math. Sci....
    • 27. Tang, J., Li, B., Cheng, W.C.: Some properties on topological entropy of free semigroup action. Dyn. Syst. 33, 54–71 (2018)
    • 28. Walters, P.: An Introduction to Ergodic Theory, Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin (1982)
    • 29. Wang, H., Liao, X., Liu, Q., et al.: Topological entropy pairs for an iterated function system. J. Math. Anal. Appl. 488, 124076 (2020)
    • 30. Wang, X., Zhang, Y., Zhu, Y.: On various entropies of set-valued maps. J. Math. Anal. Appl. 524, 127097 (2023)
    • 31. Wang, Y., Ma, D.: On the topological entropy of a semigroup of continuous maps. J. Math. Anal. Appl. 427, 1084–1100 (2015)
    • 32. Wang, Y., Ma, D., Lin, X.: On the topological entropy of free semigroup actions. J. Math. Anal. Appl. 435, 1573–1590 (2016)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno