Ir al contenido

Documat


Turing Patterns Induced by Cross-Diffusion in a Predator–Prey System with Functional Response of Holling-II Type

  • Xiang-Ping Yan [1] ; Tong-Jie Yang [1] ; Cun-Hua Zhang [1]
    1. [1] Lanzhou Jiaotong University

      Lanzhou Jiaotong University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01031-x
  • Enlaces
  • Resumen
    • In this article, a classical predator–prey system with linear cross-diffusion and HollingII type functional response and subject to homogeneous Neuamnn boundary condition is considered. The spatially homogeneous Hopf bifurcation curve and Turing bifurcation curve of the constant coexistence equilibrium are established with the help of the linearized analysis. When the bifurcation parameters are restricted to the Turing instability region and near the Turing bifurcation curve, the associated amplitude equations of the original system near the constant coexistence equilibrium are obtained by means of multiple-scale time perturbation analysis. According to the obtained amplitude equations, the stability and classification of spatiotemporal patterns of the original system near the constant coexistence equilibrium are determined. It is shown that the cross-diffusion in the classical predator–prey system plays an important role in formation of spatiotemporal patterns. Also, the theoretical results are verified numerically

  • Referencias bibliográficas
    • 1. Bentout, S., Djilali, S., Atangana, A.: Bifurcation analysis of an age-structured prey–predator model with infection developed in prey....
    • 2. Bentout, S., Djilali, S., Ghanbari, B.: Backward, Hopf bifurcation in a heroin epidemic model with treat age. Int. J. Model. Simul. Sci....
    • 3. Bentout, S., Djilali, S., Kuniya, T., Wang, J.-L.: Mathematical analysis of a vaccination epidemic model with nonlocal diffusion. Math....
    • 4. Boudjema, I., Djilali, S.: Turing-Hopf bifurcation in Gauss-type model with cross diffusion and its application. Nonlinear Stud. 25, 665–687...
    • 5. Chen, S.-S., Shi, J.-P., Wei, J.-J.: The effect of delay on a diffusive predator-prey system with Holling type-II predator functional response....
    • 6. Chen, M.-X., Wu, R.-C., Chen, L.-P.: Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system....
    • 7. Cheng, K.-S.: Uniqueness of a limit cycle for a predator–prey system. SIAM J. Math. Anal. 12, 541–548 (1981)
    • 8. Djilali, S.: Pattern formation of a diffusive predator–prey model with herd behavior and nonlocal prey competition. Math. Methods Appl....
    • 9. Djilali, S.: Threshold asymptotic dynamics for a spatial age-dependent cell-to-cell transmission model with nonlocal disperse. Discrete...
    • 10. Djilali, S., Bentout, S.: Pattern formations of a delayed diffusive predator–prey model with predator harvesting and prey social behavior....
    • 11. Guin, L.-N.: Spatial patterns through Turing instability in a reaction–diffusion predator-prey model. Math. Comput. Simul. 109, 174–185...
    • 12. Hsu, S.-B.: On global stability of a predator–prey system. Math. Biosci. 39, 1–10 (1978)
    • 13. Hu, G.-P., Li, X.-L.: Turing patterns of a predator–prey model with a modified Leslie-Gower term and cross-diffusions. Int. J. Biomath....
    • 14. Iida, M., Mimura, M., Ninomiya, H.: Diffusion, cross-diffusion and competitive interaction. J. Math. Biol. 53, 617–641 (2006)
    • 15. Li, Y.-X., Liu, H., Wei, Y.-M., Ma, M.: Turing pattern of a reaction–diffusion predator-prey model with weak Allee effect and delay. J....
    • 16. Mezouaghi, A., Djilali, S., Bentout, S., Biroud, K.: Bifurcation analysis of a diffusive predator–prey model with prey social behavior...
    • 17. Murray, J.-D.: Mathematical Biology II. Springer, Heidelberg (1993)
    • 18. Ouyang, Q., Gunaratne, G.H., Swinney, H.L.: Rhombic patterns: broken hexagonal symmetry. Chaos 3, 707–711 (1993)
    • 19. Ou, Y.-X.: Nonlinear Science and the Pattern Dynamics Introduction. Peking University Press, Beijing (2010)
    • 20. Peng, R., Shi, J.-P.: Non-existence of non-constant positive steady states of two Holling type-II predatorprey systems: Strong interaction...
    • 21. Song, Y.-L., Tang, X.-S.: Stability, steady-state bifurcations, and Turing patterns in a predator–prey model with herd behavior and prey-taxis....
    • 22. Tang, X.-S., Song, Y.-L.: Cross-diffusion induced spatiotemporal patterns in a predator–prey model with herd behavior. Nonlinear Anal....
    • 23. Turing, A.-M.: The chemical basis of morphogenesis. Bull. Math. Biol. 237, 37–72 (1952)
    • 24. Vanag, V., Epstein, I.: Cross-diffusion and pattern formation in reaction–diffusion systems. Phys. Chem. Chem. Phys. 11, 897–912 (2009)
    • 25. Wang, Q.-F., Peng, Y.-H.: Turing instability and pattern induced by cross-diffusion in a predator-prey system. J. Shanghai Normal Univ....
    • 26. Wu, J.-H.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)
    • 27. Yan, X.-P., Zhang, C.-H.: Stability and Turing instability in a diffusive predator-prey system with Beddington–DeAngelis functional response....
    • 28. Yang, B.: Pattern formation in a diffusive ratio-dependent Holling–Tanner predator–prey model with Smith growth. Discrete Dyn. Nat. Soc....
    • 29. Yi, F.-Q., Wei, J.-J., Shi, J.-P.: Bifurcation and spatio-temporal patterns in a homogeneous diffusive predator–prey system. J. Differ....
    • 30. Yuan, S.-L., Xu, C.-Q., Zhang, T.-H.: Spatial dynamics in a predator–prey model with herd behavior. Chaos 23, 33102–33102 (2013)
    • 31. Zhang, J.-F., Li, W.-T., Yan, X.-P.: Hopf bifurcation and Turing instability in spatial homogeneous and inhomogeneous predator-prey models....
    • 32. Zhou, Y., Yan, X.-P., Zhang, C.-H.: Turing patterns induced by self-diffusion in a predator–prey model with schooling behavior in predator...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno