Ir al contenido

Documat


Fractional Order Nonlocal Thermistor Boundary Value Problem on Time Scales

  • Jehad Alzabut [2] ; Mahammad Khuddush [3] ; Abdelkrim Salim [4] ; Sina Etemad [5] ; Shahram Rezapour [1]
    1. [1] China Medical University

      China Medical University

      Taiwán

    2. [2] Prince Sultan University & OST˙IM Technical University
    3. [3] Chegg India Pvt. Ltd.
    4. [4] Hassiba Benbouali University & Djillali Liabes University of Sidi Bel-Abbes
    5. [5] Azarbaijan Shahid Madani University & Al-Ayen University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper investigates the existence, uniqueness, and continuous dependence of solutions to fractional order nonlocal thermistor two-point boundary value problems on time scales. We employ the Schauder fixed point theorem to establish the existence of solutions, and the contraction principle to prove uniqueness. We also obtain a result on the continuous dependence of solutions. Finally, we present several examples to illustrate our findings. This work is the first to study a fractional model of thermistor on Department of Medical Research,time scales, and it makes a significant contribution to the field of modeling on time scales. The results of this paper can be used to develop new and improved mathematical models for thermistors, which can be used to design more efficient and reliable thermistor-based devices.

  • Referencias bibliográficas
    • 1. Ammi, M.R.S., Torres, D.F.M.: Numerical analysis of a nonlocal parabolic problem resulting from thermistor problem. Math. Comput. Simul....
    • 2. Ammi, M.R.S., Torres, D.F.M.: Existence and uniqueness of a positive solution to generalized nonlocal thermistor problems with fractional-order...
    • 3. Kwok, K.: Complete Guide to Semiconductor Devices. McGraw-Hill, New york (1995)
    • 4. Maclen, E.D.: Thermistors. Electrochemical Publication, Glasgow (1979)
    • 5. Lacey, A.A.: Thermal runaway in a non-local problem modelling Ohmic heating. II. General proof of blow-up and asymptotics of runaway. Eur....
    • 6. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo...
    • 7. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holl and Mathematics...
    • 8. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
    • 9. Hilfer, R.: Applications of Fractional Calculus in Physics. World scientific, Singapore (2000)
    • 10. Alzabut, J., Tyagi, S., Abbas, S.: Discrete fractional-order BAM neural networks with leakage delay: existence and stability results....
    • 11. Boutiara, A., Ben bachir, M., Alzabut, J., Samei, M. S.: Monotone iterative and upper-lower solutions techniques for solving nonlinear...
    • 12. Alzabut, J., Selvam, A.G.M., Dhineshbabu, R., Kaabar, M.K.A.: The existence, uniqueness, and stability analysis of the discrete fractional...
    • 13. Ismail, M., Saeed, U., Alzabut, J., Rehman, M.: Approximate solutions for fractional boundary value problems via Green-CAS method. Mathematics...
    • 14. Abdeljawad, T., Alzabut, J.: On Riemann-Liouville fractional q-difference equations and its application to retarded logistic type model....
    • 15. Nisar, K.S., Alsaeed, S., Kaliraj, K., Ravichandran, C., Albalawi, W., Abdel-Aty, A.H.: Existence criteria for fractional differential...
    • 16. Nisar, K.S., Jagatheeshwari, R., Ravichandran, C., Veeresha, P.: An effective analytical method for fractional Brusselator reaction-diffusion...
    • 17. Ravichandran, C., Logeswari, K., Khan, A., Abdeljawad, T.: An epidemiological model for computer virus with Atangana–Baleanu fractional...
    • 18. Nisar, K.S., Logeswari, K., Ravichandran, C., Sabarinathan, S.: New frame of fractional neutral ABCderivative with IBC and mixed delay....
    • 19. Dhayal, R., Gomez-Aguilar, J.F., Torres-Jimenez, J.: Stability analysis of Atangana–Baleanu fractional stochastic differential systems...
    • 20. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993)
    • 21. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cottenham (2009)
    • 22. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives-Theory and Applications. Gordon and Breach Science Publishers,...
    • 23. Sajedi, L., Eghbali, N.: Generalized stability of thermistor problem. Appl. Math. E-Notes 20, 516–527 (2020)
    • 24. Atici, F.M., Biles, D.C., Lebedinsky, A.: An application of time scales to economics. Math. Comp. Model. 43(7–8), 718–726 (2006)
    • 25. Bohner, M., Gelles, G.: Risk aversion and risk vulnerability in the continuous and discrete case. Decis. Econ. Finan. 35, 1–28 (2012)
    • 26. Bohner, M., Gelles, G., Heim, J.: Multiplier-accelerator models on time scales. Int. J. Stat. Econ. 4, 1–12 (2010)
    • 27. Bohner, M., Heim, J., Liu, A.: Qualitative analysis of a Solow model on time scales. J. Concr. Appl. Math. 13, 183–197 (2015)
    • 28. Khuddush, M., Prasad, K.R., Vidyasagar, K.V.: Infinitely many positive solutions for an iterative system of singular multipoint boundary...
    • 29. Prasad, K.R., Khuddush, M.: Existence and uniform asymptotic stability of positive almost periodic solutions for three-species Lotka-Volterra...
    • 30. Prasad, K.R., Khuddush, M., Vidyasagar, K.V.: Almost periodic positive solutions for a time-delayed SIR epidemic model with saturated...
    • 31. Song, W., Gao, W.: Existence of solutions for nonlocal p-Laplacian thermistor problems on time scales. Bound. Value Probl. 2013, 1 (2013)
    • 32. Abdeljawad, T.: On conformable fractional calculus. J. Comp. Appl. Math. 279, 57–66 (2015)
    • 33. Yan, R.A., Sun, S.R., Han, Z.L.: Existence of solutions of boundary value problems for Caputo fractional differential equations on time...
    • 34. Yaslan, I., Liceli, O.: Three point boundary value problems with delta Riemann-Liouville fractional derivative on time scales. Fract....
    • 35. Benkhettou, N., Hammoudi, A., Torres, D.F.M.: Existence and uniqueness of solution for a fractional Riemann-Liouville initial value problem...
    • 36. Ammi, M.R.S., Torres, D.F.M.: Existence and uniqueness results for a fractional Riemann-Liouville nonlocal thermistor problem on arbitrary...
    • 37. Cherif, A.M., Ladrani, F.Z.: New properties of the time-scale fractional operators with application to dynamic equations. Math. Moravica....
    • 38. Gulsen, T., Yilmaz, E., Goktas, S.: Conformable fractional dirac system on time scales. J. Inequal. Appl. 161(1), 1–10 (2017)
    • 39. Khuddush, M., Prasad, K.R.: Infinitely many positive solutions for an iterative system of conformable fractional order dynamic boundary...
    • 40. Wang, Y., Zhou, J., Li, Y.: Fractional Sobolev’s spaces on time scales via conformable fractional calculus and their application to a...
    • 41. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhuser, Boston Inc, Boston (2003)
    • 42. Ahmadkhanlu, A., Jahanshahi, M.: On the existence and uniqueness of solution of initial value problem for fractional order differential...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno