Ir al contenido

Documat


Quasi-Periodic Solutions to the Nonlocal Nonlinear Schrödinger Equations

  • Liang Guan [1] ; Xianguo Geng [2] ; Xue Geng [1]
    1. [1] Anyang Normal University

      Anyang Normal University

      China

    2. [2] Zhengzhou University

      Zhengzhou University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • A hierarchy of nonlocal nonlinear Schrödinger equations is derived by using the Lenard gradients and the zero-curvature equation. According to the Lax matrix of the nonlocal nonlinear Schrödinger equations, we introduce a hyperelliptic Riemann surface Kn of genus n, from which Dubrovin-type equations, meromorphic function, and Baker– Akhiezer function are established. By the theory of algebraic curves, the corresponding flows are straightened by resorting to the Abel–Jacobi coordinates. Finally, we obtain the explicit Riemann theta function representations of the Baker–Akhiezer function, specifically, that of solutions for the hierarchy of nonlocal nonlinear Schrödinger equations in regard to the asymptotic properties of the Baker–Akhiezer function.

  • Referencias bibliográficas
    • 1. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)
    • 2. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl....
    • 3. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity...
    • 4. Ablowitz, M.J., Musslimani, Z.H.: Integrable discrete PT symmetric model. Phys. Rev. E 90(3), 032912 (2014)
    • 5. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139(1), 7–59 (2017)
    • 6. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29(2), 319 (2016)
    • 7. Yan, Z.Y.: Integrable PT-symmetric local and nonlocal vector nonlinear Schrödinger equations: a unified two-parameter model. Appl. Math....
    • 8. Lou, S.Y., Huang, F.: Alice–Bob physics: coherent solutions of nonlocal KdV systems. Sci. Rep-UK 7(1), 1–11 (2017)
    • 9. Li, M., Xu, T.: Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric...
    • 10. Rao, J.G., He, J.S., Mihalache, D., Cheng, Y.: PT-symmetric nonlocal Davey–Stewartson I equation: general lump-soliton solutions on a...
    • 11. Ji, J.L., Zhu, Z.N.: On a nonlocal modified Korteweg-de Vries equation: integrability, Darboux transformation and soliton solutions. Commun....
    • 12. Zhou, Z.X.: Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation. Commun. Nonlinear....
    • 13. Yang, B., Yang, J.K.: Rogue waves in the nonlocal PT -symmetric nonlinear Schrödinger equation. Lett. Math. Phys. 109(4), 945–973 (2019)
    • 14. Ma, L.Y., Zhu, Z.N.: N-soliton solution for an integrable nonlocal discrete focusing nonlinear Schrödinger equation. Appl. Math. Lett....
    • 15. Chen, K., Deng, X., Lou, S.Y., Zhang, D.J.: Solutions of nonlocal equations reduced from the AKNS hierarchy. Stud. Appl. Math. 141(1),...
    • 16. Ma, W.X.: Riemann-Hilbert problems and soliton solutions of nonlocal real reverse-spacetime mKdV equations. J. Math. Anal. Appl. 498(2),...
    • 17. Ma, W.X.: Riemann-Hilbert problems and inverse scattering of nonlocal real reverse-spacetime matrix AKNS hierarchies. Physica D 430, 133078...
    • 18. Dubrovin, B.A.: Periodic problems for the Korteweg-de Vries equation in the class of finite band potentials. Funct. Anal. Appl. 9(3),...
    • 19. Its, A.R., Matveev, V.B.: Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation. Theor....
    • 20. Date, E., Tanaka, S.: Periodic Multi-Soliton Solutions of Korteweg-de Vries Equation and Toda Lattice. Prog. Theor. Phys. 59, 107–125...
    • 21. Krichever, I.M.: Integration of nonlinear equations by the methods of algebraic geometry. Funct. Anal. Appl. 11(1), 12–26 (1977)
    • 22. Tracy, E.R., Chen, H.H., Lee, Y.C.: Study of quasiperiodic solutions of the nonlinear Schrödinger equation and the nonlinear modulational...
    • 23. Belokolos, E.D., Bobenko, A.I., Enol’skii, V.Z., Its, A.R., Mateveev, V.B.: Algebro-Geometric Approach to Nonlinear Integrable Equations....
    • 24. Previato, E.: Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation. Duke Math. J. 52, 329–377 (1985)
    • 25. Alber, S.J.: On finite-zone solutions of relativistic Toda lattices. Lett. Math. Phys. 17(2), 149–155 (1989)
    • 26. Geng, X.G.: Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations. J. Phys. A: Math. Gen. 36(9), 2289...
    • 27. Geng, X.G., Wu, Y.T.: Finite-band solutions of the classical Boussinesq-Burgers equations. J. Math. Phys. 40(6), 2971–2982 (1999)
    • 28. Matveev, V.B., Yavor, M.I.: Solutions presque périodiques et à N-solitons de l’équation hydrodynamique non linéaire de Kaup. Ann. Inst....
    • 29. Cao, C.W.: Nonlinearization of the Lax system for AKNS hierarchy. Sci. China Ser. A. 33(5), 528–536 (1990)
    • 30. Cao, C.W., Geng, X.G.: C. Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy. J. Phys. A. 23(18), 4117–4125...
    • 31. Zhou, R.G.: The finite-band solution of the Jaulent–Miodek equation. J. Math. Phys. 38(5), 2535–2546 (1997)
    • 32. Qiao, Z.J.: r-matrix and algebraic-geometric solution for integrable symplectic map. Chin. Sci. Bull. 44, 114–118 (1999)
    • 33. Cao, C.W., Wu, Y.T., Geng, X.G.: Relation between the Kadometsev–Petviashvili equation and the confocal involutive system. J. Math. Phys....
    • 34. Geng, X.G., Cao, C.W.: Decomposition of the (2+1)-dimensional Gardner equation and its quasiperiodic solutions. Nonlinearity 14(6),...
    • 35. Geng, X.G., Dai, H.H., Zhu, J.Y.: Decomposition of the discrete Ablowitz-Ladik hierarchy. Stud. Appl. Math. 118, 281–312 (2007)
    • 36. Chen, J.B.: The application of Neumann type systems for solving integrable nonlinear evolution equations. Stud. Appl. Math. 127(2), 153–190...
    • 37. Chen, J.B., Zhang, R.S.: The complex Hamiltonian systems and quasi-periodic solutions in the derivative nonlinear Schrödinger equations....
    • 38. Chen, J.B., Pelinovsky, D.E., White, R.E.: Periodic standing waves in the focusing nonlinear Schrödinger equation: rogue waves and modulation...
    • 39. Yue, C., Xia, T.C.: Algebro-geometric solutions for the complex Sharma-Tasso-Olver hierarchy. J. Math. Phys. 55, 083511 (2014)
    • 40. Yue, C., Xia, T.C., Liu, G.J., Lu, Q., Zhang, N.: The generalized Giachetti-Johnson hierarchy and algebro-geometric solutions of the coupled...
    • 41. Yue, C., Xia, T.C.: Algebro-geometric solutions of the coupled Chaffee-Infante reaction diffusion hierarchy. Adv. Math. Phys. 6618932...
    • 42. Gesztesy, F., Ratnaseelan, R.: An alternative approach to algebro-geometric solutions of the AKNS hierarchy. Rev. Math. Phys. 10(03),...
    • 43. Gesztesy, F., Holden, H.: Soliton Equations and their Algebro-Geometric Solutions. Cambridge University Press, Cambridge (2003)
    • 44. Zhai, Y.Y., Geng, X.G.: Straightening out of the flows for the Hu hierarchy and its algebro-geometric solutions. J. Math. Anal. Appl....
    • 45. Griffiths, P., Harris, J.: Principles of algebraic geometry. Wiley, (2014)
    • 46. Mumford, D.: Tata Lectures on Theta II. Birkhäuser, (1984)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno