Ir al contenido

Documat


Unraveling Physical Phenomena: Investigating Solitary Wave Characteristics in the Boiti–Leon–Pempinelli System

  • Fu Zhang Wang [2] ; Bacui Li [3] ; M. Higazy [1] ; Mostafa M. A. Khater [4]
    1. [1] Taif University

      Taif University

      Arabia Saudí

    2. [2] Nanchang Normal College of Applied Technology
    3. [3] Party School of CPC Fushun
    4. [4] Xuzhou Medical University & Obour High Institute for Engineering and Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This study presents a new approach for accurately obtaining solitary wave solutions in the Boiti–Leon–Pempinelli (BLP) system, which was developed by Italian mathematicians Luca Boiti, Franco Leon, and Guido Pempinelli in the late 1980 s. The BLP system is very significant in physics and is employed in several fields. It is used to simulate the behavior of nonlinear media in electromagnetic and acoustic wave propagation, as well as to understand the features of Bose–Einstein condensates. This research thoroughly examines the acquired solutions, with a particular focus on crucial factors such as the maximum amplitude, duration, and velocity of the waves. The accurate solitary wave solutions play a crucial role in enhancing the comprehension of these physical phenomena, establishing the foundation for possible practical uses.

      The suggested modified exponential function approach outperforms previous numerical strategies in terms of efficacy and dependability, demonstrating the significant potential for future study in this field. The results of our investigation are graphically shown using meticulously designed graphs, providing valuable insights into the behavior of various solutions inside the (x, t) domain. This visual depiction facilitates the identification of key characteristics such as velocity, magnitude, and form, hence improving the clarity of our study findings.

  • Referencias bibliográficas
    • 1. Boiti, M., Leon, J., Pempinelli, F.: Integrable nonisospectral models. Physics Letters A 140(5–6), 241–246 (1989)
    • 2. Leon, J., Pempinelli, F.: Exactly solvable nonisospectral models. Journal of Mathematical Physics 31(12), 2933–2939 (1990)
    • 3. Wang, K.-J., Xu, P., Shi, F.: Nonlinear dynamic behaviors of the fractional (3+ 1)-dimensional modified zakharov-kuznetsov equation....
    • 4. Wang, K.-J.: Resonant multiple wave, periodic wave and interaction solutions of the new extended (3+ 1)-dimensional boiti-leon-manna-pempinelli...
    • 5. Wang, K.-J., Hou, Q.-H.,Wu, H.-B., Cheng, Y.-Y.: Soliton molecules, novel hybrid interaction solutions and periodic wave solutions to the...
    • 6. Wang, K.-J.: Dynamics of complexiton, y-type soliton and interaction solutions to the (3+ 1)- dimensional kudryashov-sinelshchikov...
    • 7. Wang, K.-J.: Soliton molecules and other diverse wave solutions of the (2+ 1)-dimensional boussinesq equation for the shallow water....
    • 8. K.-j. Wang, Soliton molecules, y-type soliton and complex multiple soliton solutions to the extended (3+ 1)-dimensional jimbo-miwa...
    • 9. Wang, K.-J.: Soliton molecules, interaction and other wave solutions of the new (3+ 1)-dimensional integrable fourth-order equation...
    • 10. Ablowitz, M., Segur, H.: Nonlinear evolution equations and singular solutions. Journal of Mathematical Physics 30(12), 2662–2670 (1989)
    • 11. Hosseini, K., Hincal, E., Mirekhtiary, F., Sadri, K., Obi, O., Denker, A., Mirzazadeh, M.: A fourthorder nonlinear schrödinger equation...
    • 12. Hosseini, K., Hinçal, E., Ilie, M.: Bifurcation analysis, chaotic behaviors, sensitivity analysis, and soliton solutions of a generalized...
    • 13. Hosseini, K., Sadri, K., Hinçal, E., Sirisubtawee, S., Mirzazadeh, M.: A generalized nonlinear schrödinger involving the weak nonlocality:...
    • 14. Hosseini, K., Alizadeh, F., Hinçal, E., Baleanu, D., Akgül, A., Hassan, A.: Lie symmetries, bifurcation analysis, and jacobi elliptic...
    • 15. Boakye, G., Hosseini, K., Hinçal, E., Sirisubtawee, S., Osman, M.: Some models of solitary wave propagation in optical fibers involving...
    • 16. Chen, Y.: Exactly solvable models of nonlinear wave equations. Applied Mathematics and Computation 62(2–3), 177–194 (1994)
    • 17. Yang, J., Gao, Y.: New type of nonlinear wave in the generalized korteweg-de vries equation. Physics Letters A 220(2), 101–106 (1996)
    • 18. Malfliet, W.: Soliton solutions of nonlinear wave equations. American Journal of Physics 65(4), 306– 315 (1997)
    • 19. Mbopda, B.T., Issa, S., Guiem, R., Noutchie, S.O., Ekobena, H.: Travelling waves of a nonlinear reaction-diffusion model of the hepatitis...
    • 20. Djilali, S., Bentout, S., Ghanbari, B., Kumar, S.: Spatial patterns in a vegetation model with internal competition and feedback regulation....
    • 21. Ghanbari, B., Baleanu, D.: New solutions of gardner’s equation using two analytical methods. Frontiers in Physics 7, 202 (2019)
    • 22. Ghanbari, B., Kuo, C.-K.: New exact wave solutions of the variable-coefficient (1+ 1)-dimensional benjamin-bona-mahony and (2+...
    • 23. Ghanbari, B., Baleanu, D.: New optical solutions of the fractional gerdjikov-ivanov equation with conformable derivative. Frontiers in...
    • 24. Ghanbari, B., Akgül, A.: Abundant new analytical and approximate solutions to the generalized schamel equation. Physica Scripta 95(7),...
    • 25. Ghanbari, B., Gómez-Aguilar, J.: New exact optical soliton solutions for nonlinear schrödinger equation with second-order spatio-temporal...
    • 26. Ghanbari, B., Gómez-Aguilar, J.: Optical soliton solutions for the nonlinear radhakrishnan-kundulakshmanan equation. Modern Physics Letters...
    • 27. Yomba, E.: Exact solutions of nonlinear evolution equations. Journal of Mathematical Physics 43(9), 4463–4473 (2002)
    • 28. Boiti, M., Leon, J., Pempinelli, F.: Soliton solutions of a nonlinear wave equation. Journal of Mathematical Physics 27(5), 1277–1285...
    • 29. Boiti, M., Leon, J., Pempinelli, F.: Soliton solutions of the coupled boiti-leon-pempinelli system. Journal of Mathematical Physics 29(8),...
    • 30. Fan, E., Li, B.: Soliton solutions of the coupled boiti-leon-pempinelli system with a nonlinear source. Journal of Mathematical Physics...
    • 31. Kumar, A., Gupta, R.D.: Singular solitons and rogue waves in the coupled boiti-leon-pempinelli system. Physics Letters A 256(3–4), 171–176...
    • 32. Li, B., Fan, E.: Solitons in the coupled boiti-leon-pempinelli system with a nonlinear source and its singularity structure. Physics Letters...
    • 33. Zhang, H., Li, B.: Darboux transformation of the coupled boiti-leon-pempinelli system. Journal of Mathematical Physics 42(6), 2514–2519...
    • 34. Zhang, H., Li, B.: The darboux transformation and rogue waves in the coupled boiti-leon-pempinelli system with nonlinear source. Journal...
    • 35. Boiti, M., Leon, J., Pempinelli, F.: A new completely integrable nonlinear hyperbolic equation. Physics Letters A 118(5), 262–268 (1987)
    • 36. Chen, Y.: New multi-soliton solutions of the boiti-leon-pempinelli equation. Journal of Mathematical Physics 51(12), 123518 (2010)
    • 37. Geng, X.-G., Tian, B.: Exact solutions for the boiti-leon-pempinelli equation. Physics Letters A 364(3), 184–188 (2007)
    • 38. Sun, X., Chen, Y.: New lump solutions to the boiti-leon-pempinelli equation and the modified kortewegde vries equation. Chinese Physics...
    • 40. Sun, X., Chen, Y.: New exact solutions of the boiti-leon-pempinelli equation. Nonlinear Dynamics 71(1–2), 259–265 (2013)
    • 41. Zhang, S., Wang, Y., Wu, J.-F.: Exact solutions to the boiti-leon-pempinelli equation by a new variable separation method. Chinese Physics...
    • 42. Wang, Y., Zhang, S., Wu, J.-F.: Nonlinear superposition principle of boiti-leon-pempinelli soliton equation. Communications in Theoretical...
    • 43. Chen, Y.: Multiple solitary wave solutions for the couple boiti-leon-pempinelli system. Nonlinear Analysis: Real World Applications 12(2),...
    • 44. Li, X.-Z., Yan, Z.: Multiple solitary wave solutions of the couple boiti-leon-pempinelli system. Applied Mathematics and Computation 233,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno