Ir al contenido

Documat


Paired and Unpaired Deep Generative Models on Multimodal Retinal Image Reconstruction

  • Álvaro S. Hervella [1] ; José Rouco Árbol académico ; Jorge Novo [1] Árbol académico ; Marcos Ortega [1] Árbol académico
    1. [1] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

  • Localización: XoveTIC 2019: The 2nd XoveTIC Conference (XoveTIC 2019), A Coruña, Spain, 5–6 September / Alberto Alvarellos (ed. lit.), Joaquim de Moura (ed. lit.), Beatriz Botana Barreiro (ed. lit.), Javier Pereira-Loureiro (ed. lit.) Árbol académico, Manuel Francisco González Penedo (ed. lit.) Árbol académico, 2019, ISBN 978-3-03921-444-0
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This work explores the use of paired and unpaired data for training deep neural networks in the multimodal reconstruction of retinal images. Particularly, we focus on the reconstruction of fluorescein angiography from retinography, which are two complementary representations of the eye fundus. The performed experiments allow to compare the paired and unpaired alternatives.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno