Ir al contenido

Documat


Enhancing Pathological Detection and Monitoring in OCT Volumes with Limited Slices using Convolutional Neural Networks and 3D Visualization Techniques

  • Emilio López Varela [1] ; Noelia Barreira [1] ; Nuria Olivier Pascual ; Manuel G. Penedo
    1. [1] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

  • Localización: VI Congreso XoveTIC: impulsando el talento científico / coord. por Javier Pereira-Loureiro Árbol académico, Manuel Francisco González Penedo Árbol académico; Manuel Lagos Rodríguez (ed. lit.), Álvaro Leitao Rodríguez (ed. lit.), Tirso Varela Rodeiro (ed. lit.), 2023
  • Idioma: inglés
  • DOI: 10.17979/SPUDC.000024.23
  • Enlaces
  • Resumen
    • Optical Coherence Tomography (OCT) is a non-invasive imaging technique with a crucial role in the monitoring of a wide range of diseases. In order to make a good diagnosis it is essential that clinicians can observe any subtle changes that appear in the multiple ocular structures, so it is imperative that the 3D OCT volumes have good resolution in each axis. Unfortunately, there is a trade-off between image quality and the number of volume slices. In this work, we use a convolutional neural network to generate the intermediate synthetic slices of the OTC volumes and we propose a few variants of a 3D reconstruction algorithm to create visualizations that emphasize the changes present in multiple retinal structures to aid clinicians in the diagnostic process


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno