Ir al contenido

Documat


artcat: Sample-size calculation for an ordered categorical outcome

  • Autores: Ian R. White, Ella Marley Zagar, Tim P. Morris, Mahesh K. B. Parmar, Patrick Royston, Abdel G. Babiker
  • Localización: The Stata journal, ISSN 1536-867X, Vol. 23, Nº. 1, 2023, págs. 3-23
  • Idioma: inglés
  • DOI: 10.1177/1536867X231161934
  • Enlaces
  • Resumen
    • We describe a new command, artcat, that calculates sample size or power for a randomized controlled trial or similar experiment with an ordered categorical outcome, where analysis is by the proportional-odds model. artcat implements the method of Whitehead (1993, Statistics in Medicine 12: 2257–2271).

      We also propose and implement a new method that 1) allows the user to specify a treatment effect that does not obey the proportional-odds assumption, 2) offers greater accuracy for large treatment effects, and 3) allows for noninferiority trials.

      We illustrate the command and explore the value of an ordered categorical outcome over a binary outcome in various settings. We show by simulation that the methods perform well and that the new method is more accurate than Whitehead’s method.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno