Ir al contenido

Documat


Resumen de Maximal graphical realization of a topology

Ullas Thomas, Sunil C. Mathew

  • Given a topological space, the graphical realizations of it with as many edges as possible, called maximal graphical realizations, are studied here. Every finite topological space admits a maximal graphical realization. However, there are graphs which are not maximal graphical realizations of any topology. A tree of odd order is never a maximal graphical realization of a topological space. Maximal graphical realization of a topology is a cycle if and only if it is C_3. It is shown that chain topologies admit unique maximal graphical realizations. A lower bound for the size of a maximal graphical realization is also obtained.


Fundación Dialnet

Mi Documat