Ir al contenido

Documat


Automatic Cell Counting With YOLOv5: A Fluorescence Microscopy Approach

  • Sebastián López Flórez [1] ; Alfonso González-Briones [1] ; Guillermo Hernández [1] ; Carlos Ramos [2] Árbol académico ; Fernando de la Prieta [1] Árbol académico
    1. [1] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

    2. [2] Institute of Engineering - Polytechnic of Porto
  • Localización: IJIMAI, ISSN-e 1989-1660, Vol. 8, Nº. 3, 2023, págs. 64-71
  • Idioma: inglés
  • DOI: 10.9781/ijimai.2023.08.001
  • Enlaces
  • Resumen
    • Counting cells in a Neubauer chamber on microbiological culture plates is a laborious task that depends on technical experience. As a result, efforts have been made to advance computer vision-based approaches, increasing efficiency and reliability through quantitative analysis of microorganisms and calculation of their characteristics, biomass concentration, and biological activity. However, variability that still persists in these processes poses a challenge that is yet to be overcome. In this work, we propose a solution adopting a YOLOv5 network model for automatic cell recognition and counting in a case study for laboratory cell detection using images from a CytoSMART Exact FL microscope. In this context, a dataset of 21 expert-labeled cell images was created, along with an extra Sperm DetectionV dataset of 1024 images for transfer learning. The dataset was trained using the pretrained YOLOv5 algorithm with the Sperm DetectionV database. A laboratory test was also performed to confirm result’s viability. Compared to YOLOv4, the current YOLOv5 model had accuracy, precision, recall, and F1 scores of 92%, 84%, 91%, and 87%, respectively. The YOLOv5 algorithm was also used for cell counting and compared to the current segmentation-based U-Net and OpenCV model that has been implemented. In conclusion, the proposed model successfully recognizes and counts the different types of cells present in the laboratory.

  • Referencias bibliográficas
    • [1] M. Anderson, P. Hinds, S. Hurditt, P. Miller, D. McGrowder, R. AlexanderLindo, “The microbial content of unexpired pasteurized milk from selected...
    • [2] T. E. Gray, D. G. Thomassen, M. J. Mass, J. C. Barrett, “Quantitation of cell proliferation, colony formation, and carcinogen induced...
    • [3] Y. Li, G. Hetet, A.-M. Maurer, Y. Chait, D. Dhermy, J. Briere, “Spontaneous megakaryocyte colony formation in myeloproliferative disorders...
    • [4] W. Xie, J. A. Noble, A. Zisserman, “Microscopy cell counting and detection with fully convolutional regression networks,” Computer methods...
    • [5] T. Falk, D. Mai, R. Bensch, Ö. Çiçek, A. Abdulkadir, Y. Marrakchi, A. Böhm, J. Deubner, Z. Jäckel, K. Seiwald, et al., “U-net: deep learning...
    • [6] V. Gallego Albiach, L. M. Pérez Igualada, “Estimación de la densidad celular mediante el uso de cámaras de recuento,” 2021.
    • [7] C. Wilson, R. Lukowicz, S. Merchant, H. Valquier- Flynn, J. Caballero, J. Sandoval, M. Okuom, C. Huber, T. D. Brooks, E. Wilson, et al., “Quantitative...
    • [8] G. M. Knight, E. Dyakova, S. Mookerjee, F. Davies, E. T. Brannigan, J. A. Otter, A. H. Holmes, “Fast and expensive (pcr) or cheap and...
    • [9] B. Song, B. Zhuge, H. Fang, J. Zhuge, “Analysis of the chromosome ploidy of candida glycerinogenes,” Wei Sheng wu xue bao= Acta Microbiologica Sinica,...
    • [10] S. I. Kim, H. J. Kim, H.-J. Lee, K. Lee, D. Hong, H. Lim, K. Cho, N. Jung, Y. W. Yi, “Application of a non- hazardous vital dye for cell...
    • [11] D. Wang, M. Hwang, W.-C. Jiang, K. Ding, H. C. Chang, K.-S. Hwang, “A deep learning method for counting white blood cells in bone marrow images,”...
    • [12] X. Zhu, S. Lyu, X. Wang, Q. Zhao, “Tph-yolov5: Improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios,”...
    • [13] S.-J. Lee, P.-Y. Chen, J.-W. Lin, “Complete blood cell detection and counting based on deep neural networks,” Applied Sciences, vol....
    • [14] Y. Egi, M. Hajyzadeh, E. Eyceyurt, “Drone-computer communication based tomato generative organ counting model using yolo v5 and deepsort,”...
    • [15] S. Xiang, S. Wang, M. Xu, W. Wang, W. Liu, “Yolo pod: a fast and accurate multi-task model for dense soybean pod counting,” Plant Methods,...
    • [16] R. K. Purwar, S. Verma, “Analytical study of yolo and its various versions in crowd counting,” in Intelligent Data Communication Technologies...
    • [17] S. He, K. T. Minn, L. Solnica-Krezel, M. A. Anastasio, H. Li, “Deeplysupervised density regression for automatic cell counting in microscopy images,”...
    • [18] D. Zhang, P. Zhang, L. Wang, “Cell counting algorithm based on yolov3 and image density estimation,” in 2019 IEEE 4th international conference on...
    • [19] S. L. Flórez, A. González-Briones, G. Hernández, F. de la Prieta, “Automated counting via multicolumn network and cytosmart exact fl microscope,”...
    • [20] S. Chakraborty, C. Das, K. Ghoshal, M. Bhattacharyya, A. Karmakar, S. Chattopadhyay, “Low frequency impedimetric cell counting: analytical modeling...
    • [21] A. Aijaz, D. Trawinski, S. McKirgan, B. Parekkadan, “Non-invasive cell counting of adherent, suspended and encapsulated mammalian cells using...
    • [22] M. M. Alam, M. T. Islam, “Machine learning approach of automatic identification and counting of blood cells,” Healthcare technology letters, vol....
    • [23] J. Matas, O. Chum, M. Urban, T. Pajdla, “Robust wide-baseline stereo from maximally stable extremal regions,” Image and vision computing, vol....
    • [24] C. Arteta, V. Lempitsky, J. A. Noble, A. Zisserman, “Learning to detect cells using non-overlapping extremal regions,” in Medical Image...
    • [25] V. Acharya, P. Kumar, “Identification and red blood cell automated counting from blood smear images using computer-aided system,” Medical...
    • [26] M. L. Clarke, R. L. Burton, A. N. Hill, M. Litorja, M. H. Nahm, J. Hwang, “Low-cost, high-throughput, automated counting of bacterial...
    • [27] A. Vembadi, A. Menachery, M. A. Qasaimeh, “Cell cytometry: Review and perspective on biotechnological advances,” Frontiers in bioengineering and...
    • [28] M. M. Alam, M. T. Islam, “Machine learning approach of automatic identification and counting of blood cells,” Healthcare technology letters, vol....
    • [29] P. J. Schüffler, T. J. Fuchs, C. S. Ong, P. J. Wild, N. J. Rupp, J. M. Buhmann, “Tmarker: A free software toolkit for histopathological...
    • [30] R. J. Santen, “Automated estimation of diploid and tetraploid nuclei with an electronic particle counter,” Experimental Cell Research,...
    • [31] Y. Payasi, S. Patidar, “Diagnosis and counting of tuberculosis bacilli using digital image processing,” in 2017 international conference...
    • [32] M. L. Clarke, R. L. Burton, A. N. Hill, M. Litorja, M. H. Nahm, J. Hwang, “Low-cost, high-throughput, automated counting of bacterial...
    • [33] P. Kaur, V. Sharma, N. Garg, “Platelet count using image processing,” in 2016 3rd International conference on computing for sustainable...
    • [34] V. Acharya, P. Kumar, “Identification and red blood cell automated counting from blood smear images using computer-aided system,” Medical...
    • [35] C. Arteta, V. Lempitsky, J. A. Noble, A. Zisserman, “Detecting overlapping instances in microscopy images using extremal region trees,”...
    • [36] W. Xie, J. A. Noble, A. Zisserman, “Microscopy cell counting and detection with fully convolutional regression networks,” Computer methods...
    • [37] M. A. Kumaar, D. Samiayya, V. Rajinikanth, D. Raj Vincent PM, S. Kadry, “Brain tumor classification using a pre-trained auxiliary classifying style-based...
    • [38] S.-H. Chen, C.-W. Wang, I. Tai, K.-P. Weng, Y.-H. Chen, K.-S. Hsieh, et al., “Modified yolov4-densenet algorithm for detection of ventricular...
    • [39] P. Kaur, V. Sharma, N. Garg, “Platelet count using image processing,” in 2016 3rd International conference on computing for sustainable...
    • [40] M. Yuzkat, H. O. Ilhan, N. Aydin, “Detection of sperm cells by singlestage and two-stage deep object detectors,” Biomedical Signal Processing and...
    • [41] W. Han, L. Cao, S. Xu, “A method of the coverage ratio of street trees based on deep learning.,” International Journal of Interactive...
    • [42] J. G. A. Barbedo, “Automatic object counting in neubauer chambers,” Scientific. net, 2013, doi: 10.14209/sbrt.2013.224.
    • [43] M. J. Sanderson, I. Smith, I. Parker, M. D. Bootman, “Fluorescence microscopy,” Cold Spring Harb. Protoc., vol. 2014, p. db.top071795,...
    • [44] X. Xu, Y. Feng, C. Han, Z. Yao, Y. Liu, C. Luo, J. Sheng, “Autophagic response of intestinal epithelial cells exposed to polystyrene...
    • [45] king mongkuts university of technology thonburi, “sperm detectionv4 dataset.” https://universe.roboflow.com/king-mongkuts-university-oftechnology-thonburi-ybmh7/sperm-detectionv4,...
    • [46] Z. Wang, L. Jin, S. Wang, H. Xu, “Apple stem/calyx real-time recognition using yolo-v5 algorithm for fruit automatic loading system,”...
    • [47] X. Dong, S. Yan, C. Duan, “A lightweight vehicles detection network model based on yolov5,” Engineering Applications of Artificial Intelligence, vol....
    • [48] N. Al-Qubaydhi, A. Alenezi, T. Alanazi, A. Senyor, N. Alanezi, B. Alotaibi, M. Alotaibi, A. Razaque, A. A. Abdelhamid, A. Alotaibi, “Detection...
    • [49] S. L. Flórez, A. González-Briones, G. Hernández, F. de la Prieta, “Automated counting via multicolumn network and cytosmart exact fl microscope,”...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno