Ir al contenido

Documat


Resumen de Primitives of continuous functions via polynomials

Patrik Lundström

  • In standard books on calculus the existence of primitive functions of continuous functions is proved, in one way or another, using Riemann sums. In this note we present a completely different self-contained, however probably folkloristic, proof of this existence. Our proof combines, on the one hand, the so-called Stone Weierstrass theorem on uniform approximation of continuous functions on the unit interval by polynomials, and, on the other hand, a classical result from calculus on the existence of limits of differentiated sequences of functions. The sought for primitive is then constructed as the limit of primitives of the polynomials approximating the original function.


Fundación Dialnet

Mi Documat