Ir al contenido

Documat


An interpretable machine learning approach to predict sensory processing sensitivity trait in nursing students

  • Alicia Ponce-Valencia [1] ; Diana Jiménez-Rodríguez [2] ; Juan José Hernández Morante [1] ; Carlos Martínez Cortés [1] ; Horacio Pérez-Sánchez [1] ; Paloma Echevarría Pérez [1]
    1. [1] Universidad Católica San Antonio

      Universidad Católica San Antonio

      Murcia, España

    2. [2] Universidad de Almería

      Universidad de Almería

      Almería, España

  • Localización: EJIHPE: European Journal of Investigation in Health, Psychology and Education, ISSN 2174-8144, ISSN-e 2254-9625, Vol. 14, Nº. 4, 2024, págs. 913-928
  • Idioma: inglés
  • DOI: 10.3390/ejihpe14040059
  • Enlaces
  • Resumen
    • Sensory processing sensitivity (SPS) is a personality trait that makes certain individuals excessively sensitive to stimuli. People carrying this trait are defined as Highly Sensitive People (HSP). The SPS trait is notably prevalent among nursing students and nurse staff. Although there are HSP diagnostic tools, there is little information about early detection. Therefore, the aim of this work was to develop a prediction model to identify HSP and provide an individualized nursing assessment. A total of 672 nursing students completed all the evaluations. In addition to the HSP diagnosis, emotional intelligence, communication skills, and conflict styles were evaluated. An interpretable machine learning model was trained to predict the SPS trait. We observed a 33% prevalence of HSP, which was higher in women and people with previous health training. HSP were characterized by greater emotional repair (p = 0.033), empathy (p = 0.030), respect (p = 0.038), and global communication skills (p = 0.036). Overall, sex and emotional intelligence dimensions are important to detect this trait, although personal characteristics should be considered. The present individualized prediction model could help to predict the presence of the SPS trait in nursing students, which may be useful in conducting intervention strategies to avoid the negative consequences and reinforce the positive ones of this trait.

  • Referencias bibliográficas
    • Aron, E.N.; Aron, A. Sensory-Processing Sensitivity and Its Relation to Introversion and Emotionality. J. Pers. Soc. Psychol. 1997, 73, 345–368....
    • Acevedo, B.P.; Aron, E.N.; Aron, A.; Sangster, M.D.; Collins, N.; Brown, L.L. The Highly Sensitive Brain: An FMRI Study of Sensory Processing...
    • Acevedo, B.P.; Santander, T.; Marhenke, R.; Aron, A.; Aron, E. Sensory Processing Sensitivity Predicts Individual Differences in Resting-State...
    • Aron, E.N.; Aron, A.; Jagiellowicz, J. Sensory Processing Sensitivity: A Review in the Light of the Evolution of Biological Responsivity....
    • Smolewska, K.A.; McCabe, S.B.; Woody, E.Z. A Psychometric Evaluation of the Highly Sensitive Person Scale: The Components of Sensory-Processing...
    • Greven, C.U.; Lionetti, F.; Booth, C.; Aron, E.N.; Fox, E.; Schendan, H.E.; Pluess, M.; Bruining, H.; Acevedo, B.; Bijttebier, P.; et al. Sensory...
    • Jagiellowicz, J.; Aron, A.; Aron, E.N. Relationship between the Temperament Trait of Sensory Processing Sensitivity and Emotional Reactivity....
    • Ellis, B.J.; Boyce, W.T.; Belsky, J.; Bakermans-Kranenburg, M.J.; Van Ijzendoorn, M.H. Differential Susceptibility to the Environment: An...
    • Homberg, J.R.; Jagiellowicz, J. A Neural Model of Vulnerability and Resilience to Stress-Related Disorders Linked to Differential Susceptibility....
    • Pluess, M. Vantage Sensitivity: Environmental Sensitivity to Positive Experiences as a Function of Genetic Differences. J. Pers. 2017, 85,...
    • Lionetti, F.; Aron, A.; Aron, E.N.; Burns, G.L.; Jagiellowicz, J.; Pluess, M. Dandelions, Tulips and Orchids: Evidence for the Existence of...
    • Costa-lópez, B.; Ferrer-cascales, R.; Ruiz-robledillo, N.; Albaladejo-blázquez, N.; Baryła-matejczuk, M. Relationship between Sensory Processing...
    • Hentges, R.F.; Davies, P.T.; Cicchetti, D. Temperament and Interparental Conflict: The Role of Negative Emotionality in Predicting Child Behavioral...
    • Assary, E.; Vincent, J.P.; Keers, R.; Pluess, M. Gene-Environment Interaction and Psychiatric Disorders: Review and Future Directions. Semin....
    • Gallego-Gómez, J.I.; Campillo-Cano, M.; Carrión-Martínez, A.; Balanza, S.; Rodríguez-González-moro, M.T.; Simonelli-Muñoz, A.J.; Rivera-Caravaca,...
    • Slagt, M.; Dubas, J.S.; van Aken, M.A.G.; Ellis, B.J.; Dekovi´c, M. Sensory Processing Sensitivity as a Marker of Differential Susceptibility...
    • Liu, C.H.; Stevens, C.; Wong, S.H.M.; Yasui, M.; Chen, J.A. The Prevalence and Predictors of Mental Health Diagnoses and Suicide among U.S....
    • El Naqa, I.; Murphy, M.J. What Is Machine Learning? In Machine Learning in Radiation Oncology; Springer: Cham, Switzerland, 2015; pp. 3–11.
    • Yarkoni, T.; Westfall, J. Choosing Prediction over Explanation in Psychology: Lessons from Machine Learning. Perspect. Psychol. Sci. 2017,...
    • Zhou, Y.; Han, W.; Yao, X.; Xue, J.J.; Li, Z.; Li, Y. Developing a Machine Learning Model for Detecting Depression, Anxiety, and Apathy in...
    • Christ, N.M.; Elhai, J.D.; Forbes, C.N.; Gratz, K.L.; Tull, M.T. A Machine Learning Approach to Modeling PTSD and Difficulties in Emotion...
    • Dwyer, D.B.; Falkai, P.; Koutsouleris, N. Machine Learning Approaches for Clinical Psychology and Psychiatry. Annu. Rev. Clin. Psychol. 2018,...
    • Ponce-Valencia, A.; Jiménez-Rodríguez, D.; Simonelli-Muñoz, A.J.; Gallego-Gómez, J.I.; Castro-Luna, G.; Pérez, P.E. Adaptation of the Highly...
    • Fernandez-Berrocal, P.; Extremera, N.; Ramos, N. Validity and Reliability of the Spanish Modified Version of the Trait Meta-Mood Scale. Psychol....
    • Salovey, P.; Mayer, J.D.; Goldman, S.L.; Turvey, C.; Palfai, T.P. Emotional attention, clarity, and repair: Exploring emotional intelligence...
    • Leal-Costa, C.; Tirado González, S.; Ramos-Morcillo, A.; Díaz Agea, J.; Ruzafa-Martínez, M.; van-der Hofstadt Román, C.; Leal-Costa, C.; Tirado...
    • Kilmann, R.H.; Thomas, K.W. Developing a Forced-Choice Measure of Conflict-Handling Behavior: The “Mode” Instrument. Educ. Psychol. Meas....
    • Banegas-Luna, A.J.; Pérez-Sánchez, H. SIBILA: A Novel Interpretable Ensemble of General-Purpose Machine Learning Models Applied to Medical...
    • Çiftçi, B.; Aras, G.N.; Yıldız, Ö. Examining the Correlation between Intercultural Sensitivity and Individualized Care Perception of Nursing...
    • Camps Bansell, J.; Selvam, R.M.; Sheymardanov, S.; Camps Bansell, J.; Selvam, R.M.; Sheymardanov, S. Resolución de Conflictos en La Adolescencia:...
    • Hofmann, S.G.; Bitran, S. Sensory-Processing Sensitivity in Social Anxiety Disorder: Relationship to Harm Avoidance and Diagnostic Subtypes....
    • Fernández-Berrocal, P.; Extremera, N. Inteligencia Emocional Percibida y Diferencias Individuales En El Meta-Conocimiento de Los Estados Emocionales:...
    • Fiori, M. A New Look at Emotional Intelligence: A Dual-Process Framework. Pers. Soc. Psychol. Rev. 2009, 13, 21–44.
    • Drndarevi´c, N.; Proti´c, S.; Mestre, J.M. Sensory-Processing Sensitivity and Pathways to Depression and Aggression: The Mediating Role of...
    • McCarthy, B.; Trace, A.; O’Donovan, M.; Brady-Nevin, C.; Murphy, M.; O’Shea, M.; O’Regan, P. Nursing and Midwifery Students’ Stress and Coping...
    • Baumeister, R.F.; Vohs, K.D.; DeWall, C.N.; Zhang, L. How Emotion Shapes Behavior: Feedback, Anticipation, and Reflection, Rather than Direct...
    • Labrague, L.J.; McEnroe-Petitte, D.M.; De Los Santos, J.A.A.; Edet, O.B. Examining Stress Perceptions and Coping Strategies among Saudi Nursing...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno