Ir al contenido

Documat


Common fixed point theorems on complete and weak G-complete fuzzy metric spaces

  • Adhya, Sugata [2] ; Deb Ray, A. [1]
    1. [1] University of Calcutta

      University of Calcutta

      India

    2. [2] The Bhawanipur Education Society College
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 25, Nº. 1, 2024, págs. 17-34
  • Idioma: inglés
  • DOI: 10.4995/agt.2024.20590
  • Enlaces
  • Resumen
    • Motivated by Gopal and Vetro [Iranian Journal of Fuzzy Systems, 11(3), 95-107], we introduce a symmetric pair of β-admissible mappings and obtain common fixed point theorems for such a pair in complete and weak G-complete fuzzy metric spaces. In particular, we rectified, generalize and improve the common fixed point theorem obtained by Turkoglu and Sangurlu [Journal of Intelligent & Fuzzy Systems, 26(1), 137-142] for two fuzzy ψ-contractive mappings. We include non-trivial examples to exhibit the generality and demonstrate our results.

  • Referencias bibliográficas
    • S. Adhya and A. Deb Ray, On weak G-completeness for fuzzy metric spaces, Soft Comput. 22, no. 5 (2022), 2099-2105. https://doi.org/10.1007/s00500-021-06632-1
    • S. Adhya and A. Deb Ray, Some properties of Lebesgue fuzzy metric spaces, Sahand Commun. Math. Anal. 18, no. 1 (2021), 1-14.
    • A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set. Syst. 64, no. 3 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
    • D. Gopal and C. Vetro, Some new fixed point theorems in fuzzy metric spaces, Iran. J. Fuzzy Syst. 11, no. 3 (2014), 95-107.
    • M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set. Syst. 27, no. 3 (1988), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
    • V. Gregori, J. J. Miñana and S. Morillas, Some questions in fuzzy metric spaces, Fuzzy Set. Syst. 204 (2012), 71-85. https://doi.org/10.1016/j.fss.2011.12.008
    • V. Gregori, J. J. Miñana and A. Sapena, On Banach contraction principles in fuzzy metric spaces, Fixed Point Theory 19, no. 1 (2018), 235-248....
    • V. Gregori, and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Set. Syst. 125, no. 2 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9
    • V. Istrăţescu, An introduction to theory of probabilistic metric spaces, with applications. Ed, Tehnica, Bucurest, 1974.
    • I. Kramosil and J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika 11, no. 5 (1975), 336-344.
    • K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A. 28, no. 12 (1942), 535. https://doi.org/10.1073/pnas.28.12.535
    • D. Mihet, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Set. Syst. 159, no. 6 (2008), 739-744. https://doi.org/10.1016/j.fss.2007.07.006
    • H. Sherwood, On the completion of probabilistic metric spaces, Z. Wahrsch. verw. Geb. 6, no. 1 (1966), 62-64. https://doi.org/10.1007/BF00531809
    • B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10, no. 1 (1960), 313-334. https://doi.org/10.2140/pjm.1960.10.313
    • D. Turkoglu and M. Sangurlu, Fixed point theorems for fuzzy ψ-contractive mappings in fuzzy metric spaces, J. Intell. Fuzzy Syst. 26, no....
    • C. Vetro, Fixed points in weak non-Archimedean fuzzy metric spaces, Fuzzy Set. Syst. 162, no. 1 (2011), 84-90. https://doi.org/10.1016/j.fss.2010.09.018

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno