Ir al contenido

Documat


On interpolative Hardy-Rogers type cyclic contractions

  • Edraoui, Mohamed [1] ; El koufi, Amine [2] ; Aamri, Mohamed [1]
    1. [1] Université Hassan II de Casablanca

      Université Hassan II de Casablanca

      Marruecos

    2. [2] Université Ibn-Tofail

      Université Ibn-Tofail

      Kenitra, Marruecos

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 25, Nº. 1, 2024, págs. 117-124
  • Idioma: inglés
  • DOI: 10.4995/agt.2024.19885
  • Enlaces
  • Resumen
    • Recently, Karapınar introduced a new Hardy-Rogers type contractive mapping using the concept of interpolation and proved a fixed point theorem in complete metric space. This new type of mapping, called "interpolative Hardy-Rogers type contractive mapping" is a generalization of Hardy-Rogers's fixed point theorem. Following this direction of research, in this paper, we will present some fixed point results of Hardy-Rogers-type for cyclic mappings on complete metric spaces. Moreover, an example is given to illustrate the usability of the obtained results.

  • Referencias bibliográficas
    • M. A. Al-Thafai, and N. Shahzad, Convergence and existence for best proximity points, Nonlinear Analysis 70 (2009), 3665-3671. https://doi.org/10.1016/j.na.2008.07.022
    • H. Aydi, E. Karapınar, and A. F. Roldán López de Hierro, w-interpolative Cirić-Reich-Rus-type contractions, Mathematics 7, no. 1 (2019), Paper...
    • M. Edraoui, M. Aamri, and S. Lazaiz, Fixed point theorems for set-valued Caristi type mappings in locally convex space, Adv. Fixed Point Theory...
    • M. Edraoui, M. Aamri, and S. Lazaiz, Fixed point theorem for α-nonexpansive wrt orbits in locally convex space, J. Math. Comput. Sci. 10 (2020),...
    • M. Edraoui, A. El koufi, and S. Semami, Fixed points results for various types of interpolative cyclic contraction, Appl. Gen. Topol. 24,...
    • Y. El Bekri, M. Edraoui, J. Mouline, A. Bassou, Interpolative Cirić-Reich-Rus-type contraction in G-metric spaces, Journal of Survey in Fisheries...
    • Y. El Bekri, M. Edraoui, J. Mouline, and A. Bassou, Cyclic coupled fixed point via interpolative Kannan type contractions, Mathematical Statistician...
    • Y. U. Gaba, and E. Karapınar, A new approach to the interpolative contractions, Axioms 8 (2019), Paper no. 110. https://doi.org/10.3390/axioms8040110
    • G. E. Hardy, and T. D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull. 16 (1973), 201-206. https://doi.org/10.4153/CMB-1973-036-0
    • R. Kannan, Some results on fixed points. II, Am. Math. Mon. 76 (1969), 405-408. https://doi.org/10.1080/00029890.1969.12000228
    • E. Karapınar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl. 2, no. 2 (2018), 85-87. https://doi.org/10.31197/atnaa.431135
    • E. Karapınar, Interpolative Kannan-Meir-Keeler type contraction, Advances in the Theory of Nonlinear Analysis and its Application 5, no. 4...
    • E. Karapınar, A survey on interpolative and hybrid contractions, In: Mathematical Analysis in Interdisciplinary Research 179, Springer International...
    • E. Karapınar, R. Agarwal, and H. Aydi, Interpolative Reich-Rus-Cirić type contractions on partial metric spaces, Mathematics 6, no. 11 (2018),...
    • E. Karapınar, A. Alid, A. Hussain, and H. Aydi, On interpolative Hardy-Rogers type multivalued contractions via a simulation function, Filomat...
    • E. Karapınar, O. Alqahtani, and H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry 11 (2019), Paper no. 8. https://doi.org/10.3390/sym11010008
    • E. Karapınar, and M. Erhan, Best proximity point on different type contractions, Applied Mathematics & Information Sciences 5, no. 3 (2011)...
    • E. Karapınar, Y. M. Erhan, and A. Y. Ulus, Fixed point theorem for cyclic maps on partial metric spaces, Appl. Math. Inf. Sci. 6 (2012), 239-244....
    • E. Karapınar, A. Fulga, and A. F. Roldán López de Hierro, Fixed point theory in the setting of (α,β,ψ,ϕ)-interpolative contractions, Adv....
    • E. Karapınar, A. Fulga, and S. S. Yeşilkaya, Interpolative Meir-Keeler Mappings in modular metric spaces, Mathematics 10, no. 16 (2022), Paper...
    • E. Karapınar, A. Fulga, and S. S. Yeşilkaya, New results on Perov-interpolative contractions of Suzuki type mappings, J. Funct. Spaces (2021),...
    • E. Karpagam, and S. Agrawal, Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps, Nonlinear Analysis 74, no. 4 (2011),...
    • M. S. Khan, Y. M. Singh, and E. Karapınar, On the interpolative (ϕ,ψ)-type Z-contraction, UPB Sci. Bull. Ser. A 83 (2021), 25-38.
    • W. A. Kirk, P. S. Srinivasan, and P. Veeramani, Fixed point for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4...
    • E. Mohamed, A. Mohamed, and L. Samih, Relatively cyclic and noncyclic P-contractions in locally K-convex space, Axioms 8 (2019), Paper no....
    • Sh. Rezapour, M. Derafshpour, and N. Shahzad, Best proximity point of cyclic φ-contractions in ordered metric spaces, Topological Methods...
    • K. Safeer, and R. Ali, Interpolative contractive results for m-metric spaces, Ad.n the Theory of Nonlinear Analysis and its App. 7, no. 2...
    • S. S. Yeşilkaya, C. Aydin, and Y. Aslan, A study on some multi-valued interpolative contractions, Communications in Advanced Mathematical...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno