Ir al contenido

Documat


Propagation Phenomena for a Lotka–Volterra Cooperative Model with Degenerate Diffusion Under Climate Change

  • Rui Yan [1] ; Guirong Liu [2] ; Yuzhe Qin [2] ; Yang Wang [2]
    1. [1] Shanxi University of Finance and Economics
    2. [2] Shanxi University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper is concerned with a Lotka–Volterra cooperative model with degenerate diffusion under climate change. Firstly, by constructing the appropriate upper and lower solutions to overcome the influence of the degeneracy and nonautonomous terms, and applying the monotone iteration method, we prove the existence of forced traveling waves with any speed c > 0 at which the habitat edge is shifting. Then based on the new comparison theorem for degenerate diffusion systems, we obtain the global existence of Cα,β-solution to the initial value problem of this system via the compactness analysis. At the end of the paper, some numerical simulations are conducted.

  • Referencias bibliográficas
    • 1. Alfaro, M., Berestycki, H., Raoul, G.: The effect of climate shift on a species submitted to dispersion, evolution, growth and nonlocal...
    • 2. Aronson, D.G.: Density-dependent interaction-diffusion systems. In: Dynamics and modelling of reactive systems (Proc. Adv. Sem., Math....
    • 3. Berestycki, H., Diekmann, O., Nagelkerke, C., Zegeling, P.: Can a species keep pace with a shifting climate? Bull. Math. Biol. 71, 399–429...
    • 4. Berestycki, H., Desvillettes, L., Diekmann, O.: Can climate change lead to gap formation? Ecol. Complex. 20, 264–270 (2014)
    • 5. Berestycki, H., Fang, J.: Forced waves of the Fisher-KPP equation in a shifting environment. J. Differ. Equ. 264, 2157–2183 (2018)
    • 6. Dash, S., Khajanchi, S.: Dynamics of intraguild predation with intraspecies competition. J. Appl. Math. Comput. 69, 4877–4906 (2023)
    • 7. De Pablo, A., Vázquez, J.: Travelling waves and finite propagation in a reaction-diffusion equation. J. Differ. Equ. 93, 19–61 (1991)
    • 8. Fang, J., Lou, Y., Wu, J.: Can pathogen spread keep pace with its host invasion? SIAM J. Appl. Math. 76, 1633–1657 (2016)
    • 9. Gilding, B., Kersner, R.: A Fisher/KPP-type equation with density-dependent diffusion and convection: travelling-wave solutions. J. Phys....
    • 10. Guo, J.S., Guo, K., Shimojo, M.: Propagation dynamics for diffusive competition systems in shifting environments. Nonlinear Anal. Real...
    • 11. Guruprasad, Samanta: Deterministic, stochastic and thermodynamic modelling of some interacting species. eBook ISBN978-981-16-6312-3, Published:...
    • 12. Hu, C.B., Shang, J., Li, B.T.: Spreading speeds for reaction-diffusion equations with a shifting habitat. J. Dynanm. Differ. Equ. 32,...
    • 13. Huang, J.H., Zou, X.F.: Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays. J. Math. Anal. Appl. 271,...
    • 14. Huang, R., Jin, C.H., Mei, M., Yin, J.X.: Existence and stability of traveling waves for degenerate reaction-diffusion equation with time...
    • 15. Khajanchi, S.: Modeling the dynamics of stage-structure predator-prey system with Monod-Haldane type response function. Appl. Math. Comput....
    • 16. Khajanchi, S., Nieto, J.J.: Spatiotemporal dynamics of a glioma immune interaction model. Sci. Rep. 11, 22385 (2021)
    • 17. Li, W.T., Wang, Z.C.: Traveling fronts in diffusive and cooperative Lotka-Volterra system with nonlocal delays. Z. Angew. Math. Phys....
    • 18. Li, W.T., Wang, J.B., Zhao, X.Q.: Spatial dynamics of a nonlocal dispersal population model in a shifting environment. J. Nonlinear Sci....
    • 19. Li, B.T., Bewick, S., Shang, J., Fagan, W.F.: Persistence and spread of a species with a shifting habitat edge. SIAM J. Appl. Math. 74(5),...
    • 20. Li, B., Zhang, L.: Travelling wave solutions in delayed cooperative systems. Nonlinearity 24, 1759– 1776 (2011)
    • 21. Li, B.: Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems. J. Differ. Equ. 252, 4842–4861 (2012)
    • 22. Liu, C.C., Mei, M., Yang, J.Q.: Global stability of traveling waves for nonlocal time-delayed degenerate diffusion equation. J. Differ....
    • 23. Liu, G.G., Xu, T.Y., Yin, J.X.: Forced waves of reaction-diffusion model with density-dependent dispersal in shifting environments. J....
    • 24. Lin, G., Li,W.T., Ruan, S.: Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays. Discrete Contin. Dyn. Sys....
    • 25. Qiao, S.X., Li, W.T., Wang, J.B.: Propagation dynamics of nonlocal dispersal competition systems in time-periodic shifting habitats. J....
    • 26. Rai, R.K., Khajanchi, S., Tiwari, P.K., et al.: Impact of social media advertisements on the transmission dynamics of COVID-19 pandemic...
    • 27. Sarkar, K., Khajanchi, S.: Spatiotemporal dynamics of a predator-prey system with fear effect. J. Franklin Inst. 360, 7380–7414 (2023)
    • 28. Tiwari, P.K., Rai, R.K., Khajanchi, S., Gupta, R.K.: Dynamics of coronavirus pandemic: effects of community awareness and global information...
    • 29. Taylor, M.E.: Partial differential equations III: Nonlinear Equations. Applied Math. Sci. 117, Springer (1997)
    • 30. Wang, J.B., Wu, C.F.: Forced waves and gap formations for a Lotka-Volterra competition model with nonlocal dispersal and shifting habitats....
    • 31. Wang, J.B., Li, W.T., Dong, F.D., Qiao, S.X.: Recent developments on spatial propagation for diffusion equations in shifting environments....
    • 32. Wang, J.B., Zhao, X.Q.: Uniqueness and global stability of forced waves in a shifting environment. Proc. Amer. Math. Soc. 147(4), 1467–1481...
    • 33. Wu, C., Wang, Y., Zou, X.: Spatial-temporal dynamics of a Lotka-Volterra competition model with nonlocal dispersal under shifting environment....
    • 34. Wu, Z., Zhao, J., Yin, J., Li, H.: Nonlinear diffusion equations. World Scientific Publishing Co. Put. Ltd., (2001)
    • 35. Xu, T.Y., Ji, S.M., Mei, M., Yin, J.X.: Traveling waves for time-delayed reaction diffusion equations with degenerate diffusion. J. Differ....
    • 36. Xu, T.Y., Ji, S.M., Mei, M., Yin, J.X.: Variational approach of critical sharp front speeds in degenerate diffusion model with time delay....
    • 37. Yan, R., Liu, G., Li, X.: Nonlinear stability of forced traveling waves for a Lotka-Volterra cooperative model under climate change. Math....
    • 38. Yang, Y., Wu, C.F., Li, Z.X.: Forced waves and their asymptotics in a Lotka-Volterra cooperative model under climate change. Appl. Math....
    • 39. Yi, T.S., Zhao, X.Q.: Propagation dynamics for monotone evolution systems without spatial translation invariance. J. Funct. Anal. 279,...
    • 40. Yuan, Y.D., Wang, Y., Zou, X.F.: Spatial dynamics of a Lotka-Volterra model with a shifting habitat. Discrete Contin. Dyn. Syst. Ser....
    • 41. Zhang, G.B., Zhao, X.Q.: Propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic shifting habitat. J. Differ....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno