Ir al contenido

Documat


Quasilinear Schrödinger Equations with Stein–Weiss Type Nonlinearity and Potential Vanishing at Infinity

  • Ming-Chao Chen [1] ; Yan-Fang Xue [1]
    1. [1] Xinyang Normal University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01013-z
  • Enlaces
  • Resumen
    • In this paper, we consider the following quasilinear Schrödinger equation involving Stein–Weiss type nonlinearity:

      −u + V(x)u − (u2)u = 1 |x| α RN G(u(y)) |y − x| μ|y| α dy g(u(x)), in RN , where N ≥ 3, 0 <μ< N, α ≥ 0 and 2α + μ < min{ N+2 2 , 4} and G is the primitive of function g. The potential V : RN → R may decay to zero at infinity. By using variational methods, penalization technique and L∞-estimates, we obtain the existence of a positive solution for the above quasilinear Schrödinger equation.

  • Referencias bibliográficas
    • 1. Aires, J.F.L., Souto, M.A.S.: Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials. J. Math. Anal. Appl....
    • 2. Aires, J.F.L., Souto, M.A.S.: Equation with positive coefficient in the quasilinear term and vanishing potential. Topol. Methods Nonlinear...
    • 3. Alves, C.O., Figueiredo, G.M., Yang, M.: Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity....
    • 4. Alves, C.O., Souto, M.A.S.: Existence of solution for a class of elliptic equations in RN with vanishing potentials. J. Differ. Equ. 252,...
    • 5. Ambrosetti, A., Wang, Z.Q.: Positive solutions to a class of quasilinear elliptic equations on R. Discrete Contin. Dyn. Syst. 9(1), 55–68...
    • 6. Araújo, Y.L., Carvalho, G., Clemente, R.: Quasilinear Schrödinger equations with singular and vanishing potentials involving nonlinearities...
    • 7. Cardoso, J.A., Prazeres, D.S.D., Severo, U.B.: Fractional Schrödinger equations involving potential vanishing at infinity and supercritical...
    • 8. Chen, J.H., Cheng, B.T., Huang, X.J.: Ground state solutions for a class of quasilinear Schrödinger equations with Choquard type nonlinearity....
    • 9. Chen, S.X., Wu, X.: Existence of positive solutions for a class of quasilinear Schrödinger equations of Choquard type. J. Math. Anal. Appl....
    • 10. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. T.M.A. 56, 213–226 (2004)
    • 11. del Pino, M., Felmer, P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial. Differ. Equ....
    • 12. do Ó, J.M., Severo, U.: Quasilinear Schrödinger equations involving concave and convex nonlinearities. Commun. Pure Appl. Anal. 8, 621–644...
    • 13. de Albuquerque, J.C., Santos, J.L.: Schrödinger equations with Stein–Weiss type nonlinearity and potential vanishing at infinity. Mediterr....
    • 14. do Ó, J.M., Gloss, E., Santana, C.: Solitary waves for a class of quasilinear Schrödinger equations involving vanishing potentials. Adv....
    • 15. Deng, Y.B., Shuai, W.: Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity....
    • 16. Du, L., Gao, F., Yang, M.: On elliptic equations with Stein–Weiss type convolution parts. Math. Z. 301, 2185–2225 (2022)
    • 17. Li, Q.Q., Nie, J.J., Zhang, W.: Existence and asymptotics of normalized ground states for a Sobolev critical Kirchhoff equation. J. Geom....
    • 18. Li, Z.X., Zhang, Y.M.: Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Commun. Pure Appl. Anal....
    • 19. Liu, J.Q., Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equations. I. Proc. Am. Math. Soc. 131(2), 441–448 (2003)
    • 20. Liu, J.Q., Wang, Y.Q., Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equations. II. J. Differ. Equ. 187(2), 473–493 (2003)
    • 21. Liu, J.Q., Wang, Y.Q., Wang, Z.Q.: Solutions for quasilinear Schrödinger equations via the Nehari method. Commun. Partial Differ. Equ....
    • 22. Liu, X.Q., Liu, J.Q., Wang, Z.Q.: Quasilinear elliptic equations via perturbation method. Proc. Am. Math. Soc. 141(1), 253–263 (2013)
    • 23. Liu, X.Q., Liu, J.Q., Wang, Z.Q.: Quasilinear elliptic equations with critical growth via perturbation method. J. Differ. Equ. 254(1),...
    • 24. Lieb, E., Loss, M.: Analysis. Graduate Studies in Mathematics. AMS, Providence (2001)
    • 25. Liu, X.N., Chen, H.B.: Positive solutions for a class of quasilinear Schrödinger equations with vanishing potentials. Bound. Value Probl....
    • 26. Ling, P.Y., Huang, X.J., Chen, J.H.: Some existence results on a class of generalized quasilinear Schrödinger equations with Choquard...
    • 27. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalleukademie Verlag, Berlin (1954)
    • 28. Poppenberg, M., Schmitt, K., Wang, Z.Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial....
    • 29. Qin, D.D., Tang, X.H., Zhang, J.: Ground states for planar Hamiltonian elliptic systems with critical exponential growth. J. Differ. Equ....
    • 30. Silva, E.A.B., Vieira, G.F.: Quasilinear asymptotically periodic Schrödinger equations with critical growth. Calc. Var. Partial. Differ....
    • 31. Stein, E., Weiss, G.: Fractional integrals on n-dimensional Euclidean space. J. Math. Mech. 7, 503–514 (1958)
    • 32. Su, Y., Shi, H.X.: Quasilinear choquard equation with critical exponent. J. Math. Anal. Appl. 508(1), 125826 (2022)
    • 33. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51(1), 126–150 (1984)
    • 34. Wang, W.B., Zhou, J.W., Li, Y.K.: Existence of positive solutions for fractional Schrödinger-Poisson system with critical or supercritical...
    • 35. Yang, H.: Singularly perturbed quasilinear Choquard equations with nonlinearity satisfying Berestycki–Lions assumptions. Bound. Value...
    • 36. Yang, X.Y., Tang, X.H., Gu, G.Z.: Multiplicity and concentration behavior of positive solutions for a generalized quasilinear Choquard...
    • 37. Zhang, J., Zhang, W.: Semiclassical states for coupled nonlinear Schrödinger system with competing potentials. J. Geom. Anal. 32, 114...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno