Ir al contenido

Documat


Mathematical Modelling of HIV/AIDS Treatment Using Caputo–Fabrizio Fractional Differential Systems

  • S. Manikandan [1] ; T. Gunasekar [2] ; A. Kouidere [3] ; K. A. Venkatesan [1] ; Kamal Shah [4] ; Thabet Abdeljawad [5]
    1. [1] Institute of Science and Technology
    2. [2] Indian Institute of Technology (IIT), Institute of Science and Technology
    3. [3] Hassan II University
    4. [4] Prince Sultan University, University of Malakand
    5. [5] Sefako Makgatho Health Sciences University, Kyung Hee University, Prince Sultan University, China Medical University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01005-z
  • Enlaces
  • Resumen
    • The focus of this study lies in developing and evaluating a Caputo–Fabrizio fractional derivative model that encapsulates the dynamics of the worldwide HIV/AIDS epidemic while integrating an antiretroviral therapy component. The methodology involves employing iterative techniques alongside the fixed-point theorem to establish the existence and uniqueness solutions of the model. In particular, the model identifies equilibrium points corresponding to disease outbreaks and disease-free scenarios.

      Additionally, it showcases the local asymptotic stability of the disease-free equilibrium point and outlines the criteria for the presence of the endemic equilibrium point.

      The findings verify that as the fractional order decreases, the disease-free equilibrium point becomes more stable. To demonstrate the impact of altering the fractional order and to bolster the theoretical finding, numerical simulations are conducted over the fractional order range.

  • Referencias bibliográficas
    • 1. Ghosh, I., et al.: A simple SI-type model for HIV/AIDS with media and self-imposed psychological fear. Math. Biosci. 306, 160–169 (2018)
    • 2. Zhai, X., et al.: Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations. Chaos Solitons Fract. 169, 113224...
    • 3. Atangana, A., Gómez-Aguilar, J.F.: Numerical approximation of Riemann–Liouville definition of fractional derivative: from Riemann–Liouville...
    • 4. Baleanu, D., et al.: Dynamical behaviours and stability analysis of a generalized fractional model with a real case study. J. Adv. Res....
    • 5. Baleanu, D., et al.: A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach....
    • 6. Saha, S., Samanta, G.P.: Modelling and optimal control of HIV/AIDS prevention through PrEP and limited treatment. Phys. A Stat. Mech. Appl....
    • 7. Samanta, G.P.: Permanence and extinction of a nonautonomous HIV/AIDS epidemic model with distributed time delay. Nonlinear Anal. Real World...
    • 8. Sharma, S., Samanta, G.P.: Dynamical behaviour of an HIV/AIDS epidemic model. Differ. Equ. Dyn. Syst. 22(4), 369–395 (2014)
    • 9. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)
    • 10. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model...
    • 11. Ullah, S., Khan, M.A., Farooq, M.: A fractional model for the dynamics of TB virus. Chaos Solitons Fract. 116, 63–71 (2018)
    • 12. Khan, A., Gómez-Aguilar, J.F., Khan, T.S., Khan, H.: Stability analysis and numerical solutions of fractional order HIV/AIDS model. Chaos...
    • 13. Lichae, B.H., Biazar, J., Ayati, Z.: The fractional differential model of HIV-1 infection of CD4+ T-cells with description of the...
    • 14. Moore, E.J., Sirisubtawee, S., Koonprasert, S.: A Caputo–Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment....
    • 15. Ullah, S., et al.: The dynamics Of HIV/AIDS model with fractal–fractional Caputo derivative. Fractals 31(02), 2340015 (2023)
    • 16. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)
    • 17. Hilfer, R, (ed.): Applications of Fractional Calculus in Physics. World Scientific (2000)
    • 18. Raghavendran, P., et al.: Solving fractional integro-differential equations by Aboodh transform. J. Math. Comput. Sci. 32, 229–240 (2023)
    • 19. Gunasekar, T., Raghavendran, P., Santra, S.S., Sajid, M.: Analyzing existence, uniqueness, and stability of neutral fractional Volterra–Fredholm...
    • 20. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2010)
    • 21. Gunasekar, A., et al.: Application of Laplace transform to solve fractional integro-differential equations. J. Math. Comput. Sci. 33(3),...
    • 22. Gunasekar, T., Raghavendran, P.: The Mohand transform approach to fractional integro-differential equations. J. Comput. Anal. Appl. 33(1),...
    • 23. Manimaran, S., et al.: Controllability of impulsive neutral functional integrodifferential inclusions with an infinite delay. Glob. J....
    • 24. Samuel, F.P., Gunasekar, T., Arjunan, M.M.: Controllability results for second order impulsive neutral functional integrodifferential...
    • 25. Khan, H., Alam, K., Gulzar, H., Etemad, S., Rezapour, S.: A case study of fractal–fractional tuberculosis model in China: existence and...
    • 26. Furati, K.M., Kassim, M.D.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64(6),...
    • 27. Zafar, Z.U.A., et al.: Fractional-order dynamics of human papillomavirus. Results Phys. 34, 105281 (2022)
    • 28. Ullah, I., Ahmad, S., Al-Mdallal, Q., Khan, Z.A., Khan, H., Khan, A.: Stability analysis of a dynamical model of tuberculosis with incomplete...
    • 29. Zafar, Z.U.A., et al.: Analysis and numerical simulation of tuberculosis model using different fractional derivatives. Chaos Solitons...
    • 30. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam...
    • 31. Poovarasan, R., et al.: The existence, uniqueness, and stability analyses of the generalized Caputo-type fractional boundary value problems....
    • 32. Poovarasan, R., et al.: Some novel analyses of the Caputo-type singular three-point fractional boundary value problems. J. Anal. 66, 1–22...
    • 33. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods...
    • 34. Kumar, P., Govindaraj, V., Murillo-Arcila, M.: The existence, uniqueness, and stability results for a nonlinear coupled system using Caputo...
    • 35. Kumar, S., et al.: Numerical investigations on COVID-19 model through singular and non-singular fractional operators. Numer. Methods Part....
    • 36. Kumar, S., et al.: A study on fractional host-parasitoid population dynamical model to describe insect species. Numer. Methods Part. Differ....
    • 37. Khan, M.A., Ullah, S., Kumar, S.: A robust study on 2019-nCOV outbreaks through non-singular derivative. Eur. Phys. J. Plus 136, 1–20...
    • 38. Kumar, S., et al.: A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer....
    • 39. Mohammadi, H., et al.: A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal...
    • 40. Kumar, S., et al.: Chaotic behaviour of fractional predator–prey dynamical system. Chaos Solitons Fractals 135, 109811 (2020)
    • 41. Gunasekar, T., Thiravidarani, J., Mahdal, M., Raghavendran, P., Venkatesan, A., Elangovan, M.: Study of non-linear impulsive neutral fuzzy...
    • 42. Gunasekar, T., et al.: Symmetry analyses of epidemiological model for Monkeypox virus with Atangana–Baleanu fractional derivative. Symmetry...
    • 43. Govindaraj, V., George, R.K.: Controllability of fractional dynamical systems: a functional analytic approach. Math. Control Related Fields...
    • 44. Govindaraj, V., George, R.K.: Functional approach to observability and controllability of linear fractional dynamical systems. J. Dyn....
    • 45. Atangana, A., Gómez-Aguilar, J.F.: A new derivative with normal distribution kernel: theory, methods and applications. Phys. A Stat. Mech....
    • 46. Ali Dokuyucu, M., et al.: Cancer treatment model with the Caputo–Fabrizio fractional derivative. Eur. Phys. J. Plus 133, 1–6 (2018)
    • 47. Zafar, Z.U.A., et al.: Numerical simulation and analysis of the stochastic HIV/AIDS model in fractional order. Results Phys. 53, 106995...
    • 48. Zafar, Z.U.A., et al.: Impact of public health awareness programs on COVID-19 dynamics: a fractional modeling approach. Fractals 6, 66...
    • 49. Khajanchi, S., et al.: Mathematical modeling of the COVID-19 pandemic with intervention strategies. Results Phys. 25, 104285 (2021)
    • 50. Rai, R.K., et al.: Impact of social media advertisements on the transmission dynamics of COVID-19 pandemic in India. J. Appl. Math. Comput....
    • 51. Samui, P., Mondal, J., Khajanchi, S.: A mathematical model for COVID-19 transmission dynamics with a case study of India. Chaos Solitons...
    • 52. Khajanchi, S., Sarkar, K.: Forecasting the daily and cumulative number of cases for the COVID-19 pandemic in India. Chaos Interdiscip....
    • 53. Sarkar, K., Khajanchi, S., Nieto, J.J.: Modeling and forecasting the COVID-19 pandemic in India. Chaos Solitons Fract. 139, 110049 (2020)
    • 54. Khajanchi, S., Sarkar, K., Mondal, J.: Dynamics of the COVID-19 pandemic in India. arXiv preprint arXiv:2005.06286 (2020)
    • 55. Mondal, J., Khajanchi, S.: Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak. Nonlinear Dyn. 109(1),...
    • 56. Tiwari, P.K., et al.: Dynamics of coronavirus pandemic: effects of community awareness and global information campaigns. Eur. Phys. J....
    • 57. Khajanchi, S., Sarkar, K., Banerjee, S.: Modeling the dynamics of COVID-19 pandemic with implementation of intervention strategies. Eur....
    • 58. Mondal, J., Khajanchi, S.: Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak. Nonlinear Dyn. 109(1),...
    • 59. Chakraborty, A., Veeresha, P., Ciancio, A., Baskonus, H.M., Alsulami, M.: The effect of climate change on the dynamics of a modified surface...
    • 60. Chakraborty, A., Veeresha, P.: Effects of global warming, time delay and chaos control on the dynamics of a chaotic atmospheric propagation...
    • 61. Ilhan, E., Veeresha, P., Baskonus, H.M.: Fractional approach for a mathematical model of atmospheric dynamics of CO2 gas with an efficient...
    • 62. Saha, S., Das, M., Samanta, G.: Analysis of an SIRS model in two-patch environment in presence of optimal dispersal strategy. Axioms 13(2),...
    • 63. Meghadri, D., Samanta, G.P.: Optimal control of a fractional order epidemic model with carriers. Int. J. Dyn. Control 10(2), 598–619 (2022)
    • 64. Hunter, J.K., Nachtergaele, B.: Applied Analysis. World Scientific Publishing Company, Singapore (2001)
    • 65. Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl 1(2), 87–92 (2015)
    • 66. Merdan, M.: Solutions of time-fractional reaction–diffusion equation with modified Riemann– Liouville derivative. Int. J. Phys. Sci. 7(15),...
    • 67. Silva, C.J., Torres, D.F.M.: A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde. Ecol. Complex. 30,...
    • 68. Mbitila, A.S., Tchuenche, JM.: HIV/AIDS Model with Early Detection and Treatment. International Scholarly Research Notices (2012)
    • 69. Ali, A., et al.: Modeling and analysis of the dynamics of novel coronavirus (COVID-19) with Caputo fractional derivative. Results Phys....
    • 70. Kreyszig, E.: Introductory Functional Analysis with Applications, vol. 17. Wiley, New York (1991)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno