Ir al contenido

Documat


The Existence of Arbitrary Multiple Nodal Solutions for a Class of Quasilinear Schrödinger Equations

  • Kun Wang [1] ; Chen Huang [1] ; Gao Jia [1]
    1. [1] University of Shanghai for Science and Technology

      University of Shanghai for Science and Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper is concerned to studying the quasilinear Schrödinger equation:

      −u + V(x)u − γ 2 (u2)u = |u| p−2u, x ∈ RN , where V(x)is a given potential, γ > 0 and either p ∈ (2, 2∗), 2∗ = 2N N−2 for N 4 or p ∈ (2, 4) for N = 3. We establish the existence of arbitrary multiple nodal solutions for the above equations

  • Referencias bibliográficas
    • 1. Abdolrazaghi, F., Razani, A.: A unique weak solution for a kind of coupled system of fractional Schrödinger equations. Opus. Math. 40,...
    • 2. Alves, C.O., Wang, Y., Shen, Y.: Soliton solutions for a class of quasilinear Schrödinger equations with a parameter. J. Differ. Equ. 259,...
    • 3. Bartsch, T., Liu, Z., Weth, T.: Nodal solutions of a p-Laplacian equation. Proc. Lond. Math. Soc. 91, 129–152 (2005)
    • 4. Bass, F.G., Nasonov, N.N.: Nonlinear electromagnetic-spin waves. Phys. Rep. 189, 165–223 (1990)
    • 5. Choudhuri, D., Saoudi, K.: Existence of multiple solutions to Schrödinger–Poisson system in a nonlocal set up in R3. Z. Angew. Math. Phys....
    • 6. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56, 213–226 (2004)
    • 7. Davydova, T.A., Fishchuk, A.I.: Upper hybrid nonlinear wave structures. Ukr. J. Phys. 40, 487 (1995)
    • 8. Hasse, R.W.: A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z. Phys. B. 37, 83–87 (1980)
    • 9. Jing, Y., Liu, H.: Sign-changing solutions for a modified nonlinear Schrödinger equation in RN . Calc. Var. Partial Differ. Equ. 61, 144...
    • 10. Jing, Y., Liu, Z.,Wang, Z.-Q.: Multiple solutions of a parameter-dependent quasilinear elliptic equation. Calc. Var. Partial Differ. Equ....
    • 11. Kosevich, A.M., Ivanov, B.A., Kovalev, A.S.: Magnetic solitons. Phys. Rep. 194, 117–238 (1990)
    • 12. Kurihara, S.: Exact soliton solution for superfluid film dynamics. J. Phys. Soc. Jpn. 50, 3801–3805 (1981)
    • 13. Liu, J., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations I. Proc. Am. Math. Soc. 187, 441–448 (2003)
    • 14. Liu, J.-Q., Wang, Z.-Q.: Multiple solutions for quasilinear elliptic equations with a finite potential well. J. Differ. Equ. 257, 2874–2899...
    • 15. Liu, J.-Q., Wang, Y.-Q., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations. II. J. Differ. Equ. 187, 473–493 (2003)
    • 16. Liu, J.-Q., Wang, Y.-Q., Wang, Z.-Q.: Quasilinear equations via elliptic regularization method. Adv. Nonlinear Stud. 13, 517–531 (2003)
    • 17. Liu, J.-Q., Wang, Y.-Q., Wang, Z.-Q.: Solutions for quasilinear Schrödinger equations via the Nehari method. Commun. Partial Differ. Equ....
    • 18. Liu, X.-Q., Liu, J.-Q., Wang, Z.-Q.: Quasilinear elliptic equations via perturbation method. Proc. Am. Math. Soc. 141, 253–263 (2013)
    • 19. Liu, J., Liu, X., Wang, Z.-Q.: Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method. Commun. Partial...
    • 20. Liu, J., Liu, X., Wang, Z.-Q.: Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete Contin. Dyn. Syst. Ser....
    • 21. Makhankov, V.G., Fedyanin, V.K.: Non-linear effects in quasi-one-dimensional models of condensed matter theory. Phys. Rep. 104, 1–86 (1984)
    • 22. Moussaoui, A., Saoudi, K.: Existence and location of nodal solutions for quasilinear convectionabsorption Neumann problems. arXiv preprint...
    • 23. Nakamura, A.: Damping and modification of exciton solitary waves. J. Phys. Soc. Jpn. 42, 1824–1835 (1977)
    • 24. Poppenberg, M., Schmitt, K., Wang, Z.-Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial...
    • 25. Quispel, G.R.W., Capel, H.W.: Equation of motion for the Heisenberg spin chain. Phys. A 110, 41–80 (1982)
    • 26. Razani, A., Cowan, C.: q-Laplace equation involving the gradient on general bounded and exterior domains. NoDEA Nonlinear Differ. Equ....
    • 27. Razani, A., Gustavo Costa, S.A., Giovany Figueiredo, M.: A study on a class of weighted elliptic problems with indefinite nonlinearities....
    • 28. Razani, A.: Non-existence of solution of Haraux–Weissler equation on a strictly starshped domain. Miskolc Math. Notes 24, 395–402 (2023)
    • 29. Shen, Y., Wang, Y.: Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal. 80, 194–201 (2013)
    • 30. Wang, Y.: Solitary solutions for a class of quasilinear Schrödinger equations in R3. Z. Angew. Math. Phys. 67, 1–17 (2016)
    • 31. Wang, Y., Shen, Y.: Existence and asymptotic behavior of positive solutions for a class of quasilinear Schrödinger equations. Adv. Nonlinear...
    • 32. Wang, Y., Zou, W.: Bound states to critical quasilinear Schrödinger equations. NoDEA Nonlinear Differ. Equ. Appl. 19, 19–47 (2012)
    • 33. Wang, X., Brown, D.W., Lindenberg, K., West, B.J.: Alternative formulation of Davydov’s theory of energy transport in biomolecular systems....
    • 34. Willem, M.: Minimax Theorems. Birkhäuser, Basel (1996)
    • 35. Yang, J., Wang, Y., Abdelgadir, A.A.: Soliton solutions for quasilinear Schrödinger equations. J. Math. Phys. 54 (2013)
    • 36. Zhang, X., Huang, C.: Asymptotic behavior of multiple solutions for quasilinear Schrödinger equations. Electron. J. Qual. Theory Differ....
    • 37. Zhang, H., Liu, Z., Tang, C., Zhang, J.: Existence and multiplicity of sign-changing solutions for quasilinear Schrödinger equations with...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno