Ir al contenido

Documat


The Behavior of a Predator–Prey System in a Stochastic Environment with Fear and Distributed Delay

  • Yaxin Zhou [1] ; Daqing Jiang [1]
    1. [1] China University of Petroleum (East China)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01008-w
  • Enlaces
  • Resumen
    • The density of a population in a natural state often fluctuates greatly, but it is not an unlimited change. Throughout the full text, we consider a stochastic predator–prey system with fear, Holling-II response function, distributed delay and mean-reverting Ornstein–Uhlenbeck process, which can better reflect the actual situation and provide theoretical basis for species research in the actual environment. And we drew some significant conclusions. The first step is to obtain the stability of equilibrium point.

      Then, the existence and uniqueness of positive solution for stochastic system is got and we also reach the stationary distribution of the stochastic system. In addition, we present an exact local expression for the density function of the random system near the unique positive equilibrium. Then we obtain the pth moment boundedness and the asymptotic behavior of the solution. At last, we give the extinction condition of the population system by the asymptotic behavior of the solution. In particular, we confirm the theoretical results by numerical simulation in the corresponding section.

  • Referencias bibliográficas
    • 1. Shaikhet, L., Abbas, S.: Novel stability conditions for some generalization of Nicholson’s blowflies model with stochastic perturbations....
    • 2. Abbas, S., Niezabitowski, M., Grace, S.R.: Global existence and stability of Nicholson blowflies model with harvesting and random effect....
    • 3. Huang, R., Wang, Y.S., Wu, H.: Population abundance in predator–prey systems with predator’s dispersal between two patches. Theor. Popul....
    • 4. Mandal, P.S., Banerjee, M.: Stochastic persistence and stationary distribution in a Holling–Tanner type prey–predator model. Phys. A 391,...
    • 5. Zhang, Q.M., Jiang, D.Q., Liu, Z.W., O’Regan, D.: The long time behavior of a predator–prey model with disease in the prey by stochastic...
    • 6. Zhang, C.H., Yan, X.P., Cui, G.H.: Hopf bifurcations in a predator–prey systems with a discrete and a distributed delay. Nonlinear Anal....
    • 7. Gramlich, P., Plitzko, S.J., Rudolf, L., Drossel, B., Gross, T.: The influence of dispersal on a predator– prey system with two habitats....
    • 8. Liu, M., Wang, K.: A note on a delay Lotka–Volterra competitive system with random perturbations. Appl. Math. Lett. 26, 589–594 (2013)
    • 9. Liu, L.D., Meng, X.Z., Zhang, T.H.: Optimal control strategy for an impulsive stochastic competition system with time delays and jumps....
    • 10. Qiu, H., Deng, W.M.: Optimal harvesting of a stochastic delay competitive Lotka–Volterra model with lévy jumps. Appl. Math. Comput. 317,...
    • 11. Nakata, Y., Muroya, Y.: Permanence for nonautonomous Lotka–Volterra cooperative systems with delays. Nonlinear Anal-Real 11, 528–534 (2010)
    • 12. Yang, Y., Wu, C.F., Li, Z.X.: Forced waves and their asymptotics in a Lotka–Volterra cooperative model under climate change. Appl. Math....
    • 13. Huang, J.H., Zou, X.F.: Traveling wavefronts in diffusive and cooperative Lotka–Volterra system with delays. J. Math. Anal. Appl. 271,...
    • 14. Das, A., Samanta, G.P.: Modeling the fear effect on a stochastic prey–predator system with additional food for the predator. J. Phys....
    • 15. Dutta, P., Sahoo, D., Mondal, S., Samanta, G.: Dynamical complexity of a delay-induced eco-epidemic model with Beddington–DeAngelis incidence...
    • 16. Sahoo, D., Samanta, G.: Oscillatory and transient dynamics of a slow–fast predator-prey system with fear and its carry-over effect. Nonlinear...
    • 17. Sahoo, D., Samanta, G., Sen, M.D.l.: Impact of fear and habitat complexity in a predator–prey system with two different shaped functional...
    • 18. Pangle, K.L., Peacor, S.D., Johannsson, O.E.: Large nonlethal effects of an invasive invertbrate predator on zooplankton population growth...
    • 19. Sahoo, D., Samanta, G.P.: Impact of fear effect in a two prey-one predator system with switching behaviour in predation. Differ. Equ....
    • 20. Wang, X.Y., Zanette, L., Zou, X.F.: Modelling the fear effect in predator–prey interactions. J. Math. Biol. 73, 1179–1204 (2016)
    • 21. Elliott, K.H., Betini, G.S., Norris, D.R.: Fear creates an Allee effect: experimentalevidence from seasonal populations. Proc. R. Soc....
    • 22. Zhang, H.S., Cai, Y.L., Fu, S.M., Wang, W.M.: Impact of the fear effect in a prey–predator model incorporating a prey refuge. Appl. Math....
    • 23. Shao, Y.F.: Global stability of a delayed predator–prey system with fear and Holling-type II functional response in deterministic and...
    • 24. Holling, C.S.: The functional response of predator to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc....
    • 25. Liu, Q.: The effects of time-dependent delays on global stability of stochastic Lotka–Volterra competitive model. Phys. A 420, 108–115...
    • 26. Zhang, X.H., Li, W.X., Li, M., Wang, K.: Dynamics of a stochastic Holling II one-predator two-prey system with jumps. Phys. A 421, 571–582...
    • 27. Zuo, W.J., Zhou, Y.X.: Density function and stationary distribution of a stochastic SIR model with distributed delay. Appl. Math. Lett....
    • 28. Zuo, W.J., Jiang, D.Q., Sun, X.G., Hayat, T., Alsaedi, A.: Long-time behaviors of a stochastic cooperative Lotka–Volterra system with...
    • 29. Sun, X.G., Zuo,W.J., Jiang, D.Q., Hayat, T.: Unique stationary distribution and ergodicity of a stochastic logistic model with distributed...
    • 30. Macdonald, N.: Time Lags in Biological Models. Springer-Verlag, Heidelberg (1987)
    • 31. Liu, M., Wang, K.: Staionary distribution, ergodicity and extinction of a stochastic generalized logistic system. Appl. Math. Lett. 25,...
    • 32. Jiang, D.Q., Shi, N.Z., Li, X.Y.: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation....
    • 33. Liu, Q., Jiang, D.Q., Shi, N.Z.: Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching....
    • 34. Mu, X.J., Jiang, D.Q., Hayat, T., Alsaedi, A., Ahmad, B.: Dynamical behavior of a stochastic Nicholson’s blowflies model with distributed...
    • 35. Mao, X.R., Marion, G., Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Proc. Appl. 97,...
    • 36. Ji, C.Y., Jiang, D.Q., Shi, N.Z.: Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic...
    • 37. Upadhyay, R.K., Mukhopadhyay, A., Iyengar, S.R.: Influence of environmental noise on the dynamics of a realistic ecological model. Fluct....
    • 38. Zhang, S.Q., Meng, X.Z., Feng, T., Zhang, T.H.: Dynamics analysis and numerical simulations of a stochastic non-autonomous predator–prey...
    • 39. Huang, C.M., Gan, S.Q., Wang, D.S.: Delay-dependent stability analysis of numerical methods for stochastic delay differential equations....
    • 40. Li, D.S.: The stationary distribution and ergodicity of a stochastic generalized logistic system. Statist. Probab. Lett. 83, 580–583 (2013)
    • 41. Zhao, Y., Yuan, S.L.: Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment....
    • 42. Mu, X.J., Jiang, D.Q., Hayat, T., Alsaedi, A., Liao, Y.: A stochastic turbidostat model with Ornstein– Uhlenbeck process: dynamics analysis...
    • 43. Zhou, B.Q., Jiang, D.Q., Hayat, T.: Analysis of a stochastic population model with mean-reverting Ornstein–Uhlenbeck process and Allee...
    • 44. Yang, Q., Zhang, X.H., Jiang, D.Q.: Dynamical behaviors of a stochastic food chain system with Ornstein-Uhlenbeck Process. J. Nonlinear...
    • 45. Shi, Z.F., Jiang, D.Q.: Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein–Uhlenbeck...
    • 46. Zhou, Y.X., Jiang, D.Q.: Dynamical behavior of a stochastic SIQR epidemic model with Ornstein– Uhlenbeck process and standard incidence...
    • 47. Zhang, X.F., Yuan, R.: A stochastic chemostat model with mean-reverting Ornstein–Uhlenbeck process and Monod-Haldane response function....
    • 48. Mao, X.R.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (1997)
    • 49. Khasminskii, R.Z.: Stochastic Stability of Differential Equations. Springer, Heidelberg Publishing (1980)
    • 50. Zhou, B.Q., Jiang, D.Q., Dai, Y.C., Hayat, T.: Threshold dynamics and probability density function of a stochastic avian influenza epidemic...
    • 51. Liu, H., Ma, Z.: The threshold of survival for system of two species in a polluted environment. J. Math. Biol. 30, 49–61 (1991)
    • 52. Gardiner, C.W.: Handbook of Stochastic Methods for Physics. Springer, Berlin (1983)
    • 53. Higham, D.J.: An algorithmic introduction to numerical simulations of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno