Ir al contenido

Documat


Normalized Solutions to the Fractional Schrödinger Equation with Critical Growth

  • Xinsi Shen [1] ; Ying Lv [1] ; Zengqi Ou [1]
    1. [1] Southwest University

      Southwest University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-00995-0
  • Enlaces
  • Resumen
    • In this paper, we discuss the existence of normalized solutions to the following fractional Schrödinger equation (−)su = λu + g(u) + |u| 2∗ s −2u, x ∈ RN , RN u2 = a2, where N ≥ 3, s ∈ (0, 1), a > 0, 2∗ s = 2N/(N − 2s), λ ∈ R arises as a Lagrange multiplier, (−)s is the fractional Laplace operator and g : R → R satisfies L2- supercritical conditions. The proof is based on a constrained minimization method and some characterizations of the mountain pass levels are given in order to prove the existence of ground state normalized solutions.

  • Referencias bibliográficas
    • 1. Cotsiolis, A., Tavoularis, N.K.: Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl....
    • 2. Willem, M.: Minimax Theorems. Birkhäuser, Berlin (1996)
    • 3. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10), 1633–1659 (1997)
    • 4. Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367(1), 67–102 (2015)
    • 5. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)
    • 6. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the laplace operator. Comm. Pure Appl. Math. 60(1), 67–112...
    • 7. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20. Springer, Berlin...
    • 8. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Models 6(1), 1–135 (2013)
    • 9. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279(6),...
    • 10. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269(9), 6941–6987 (2020)
    • 11. Zhang, P., Han, Z.: Normalized solutions to a kind of fractional Schrödinger equation with a critical nonlinearity. Z. Angew. Math. Phys....
    • 12. Zhen, M., Zhang, B.: Normalized ground states for the critical fractional NLS equation with a perturbation. Rev. Mat. Complut. 35(1),...
    • 13. Luo, H., Zhang, Z.: Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. Calc. Var. Partial Differ....
    • 14. Devillanova, G., Marano, G.C.: A free fractional viscous oscillator as a forced standard damped vibration. Fract. Calc. Appl. Anal. 19(2),...
    • 15. Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. SeMA 49(1), 33–44 (2009)
    • 16. Bonheure, D., Casteras, J.-B., Gou, T., Jeanjean, L.: Normalized solutions to the mixed dispersion noninear Schrödinger equation in the...
    • 17. Hirata, J., Tanaka, K.: Scalar field equations with L2 constraint: mountain pass and symmetric mountain pass approaches. Adv. Nonlinear...
    • 18. Jeanjean, L., Lu, S.: Nonradial normalized solutions for nonlinear scalar field equations. Nonlinearity 32(12), 4942–4966 (2019)
    • 19. Guo, Y., Luo, Y., Zhang, Q.:Minimizers of mass critical Hartree energy functionals in bounded domains. J. Differ. Equ. 265(10), 5177–5211...
    • 20. Chen, S., Tang, X.: Normalized solutions for nonautonomous Schrödinger equations on a suitable manifold. J. Geom. Anal. 30(2), 1637–1660...
    • 21. Noris, B., Tavares, H., Verzini, G.: Existence and orbital stability of the ground states with prescribed mass for the L2-critical and...
    • 22. Noris, B., Tavares, H., Verzini, G.: Normalized solutions for nonlinear Schrödinger systems on bounded domains. Nonlinearity 32(3), 1044–1072...
    • 23. Ding, Y., Zhong, X.: Normalized solution to the Schrödinger equation with potential and general nonlinear term: mass super-critical case....
    • 24. Chen, S., Rˇadulescu, V.D., Tang, X., Yuan, S.: Normalized solutions for Schrödinger equations with critical exponential growth in R2....
    • 25. Chen, S., Tang, X.: Normalized solutions for Schrödinger equations with mixed dispersion and critical exponential growth in R2. Calc....
    • 26. Chen, S., Tang, X.: Another look at Schrödinger equations with prescribed mass. J. Differ. Equ. 386(1), 435–479 (2024)
    • 27. Ghosh, S.: An existence result for singular nonlocal fractional Kirchhoff-Schrödinger-Poisson system. Complex Var. Elliptic Equ. 67(8),...
    • 28. Choudhuri, D., Saoudi, K.: Existence of multiple solutions to Schrödinger-Poisson system in a nonlocal set up in R3. Z. Angew. Math. Phys....
    • 29. Saoudi, K., Ghosh, S., Choudhuri, D.: Multiplicity and Hölder regularity of solutions for a nonlocal elliptic PDE involving singularity....
    • 30. Soni, A., Datta, S., Saoudi, K., Choudhuri, D.: Existence of solution for a system involving a singularnonlocal operator, a singularity...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno