Ir al contenido

Documat


On the -Caputo Impulsive p-Laplacian Boundary Problem: An Existence Analysis

  • Farid Chabane [1] ; Maamar Benbachir [3] ; Sina Etemad [4] ; Shahram Rezapour [2] ; Ibrahim Avcı [5]
    1. [1] University of Ghardaia

      University of Ghardaia

      Argelia

    2. [2] China Medical University

      China Medical University

      Taiwán

    3. [3] National Higher School of Mathematics
    4. [4] Azarbaijan Shahid Madani University & Al- Ayen University
    5. [5] Final International University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Due to the importance of some physical systems, in this paper, we aim to investigate a generalized impulsive ρ-Caputo differential equation equipped with a p-Laplacian operator. In fact, our problem is a generalization of fractional differential equations equipped with the integral boundary conditions, impulsive forms and p-Laplacian operators under the Nemytskii operators. In this direction, we prove some theorems on the existence property along with the uniqueness of solutions under the Nemytskii operator. More precisely, we use the Schauder’s and Schaefer’s fixed point theorems, along with the Banach contraction principle. In the sequel, two examples are provided to show the validity of the obtained results in practical.

  • Referencias bibliográficas
    • 1. Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2011)
    • 2. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
    • 3. Benchohra, M., Hamani, S., Ntouyas, S.K.: Boundary value problems for differential equations with fractional order and nonlocal conditions....
    • 4. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481...
    • 5. Kiryakova, V.S.: Generalized Fractional Calculus and Applications. CRC Press, New York (1993)
    • 6. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam...
    • 7. Webb, J.R.L.: Initial value problems for Caputo fractional equations with singular nonlinearities. Elect. J. Differ. Equ. 2019(117), 1–32...
    • 8. Leibenson, L.S.: General problem of the movement of a compressible fluid in a porous medium. Izv. Akad. Nauk Kirg. SSSR 9(1), 7–10 (1983)
    • 9. Chabane, F., Abbas, S., Benbachir, M., Benchohra, M., N’Guérékata, G.: Existence of concave positive solutions for nonlinear fractional...
    • 10. Chen, T., Liu, W., Hu, Z.: A boundary value problem for fractional differential equation with pLaplacian operator at resonance. Nonlinear...
    • 11. Liang, R., Peng, J., Shen, J.: Double positive solutions for a nonlinear four-point boundary value problem with a p-Laplacian operator....
    • 12. Su, H.: Positive solutions for n-order m-point p-Laplacian operator singular boundary value problems. Appl. Math. Comput. 199, 122–132...
    • 13. Su, H., Wei, Z., Wang, B.: The existence of positive solutions for a nonlinear four-point singular boundary value problem with a p-Laplacian...
    • 14. Tang, X., Yan, C., Liu, Q.: Existence of solutions of two-point boundary value problems for fractional p-Laplace differential equations...
    • 15. Torres, F.J.: Positive solutions for a mixed-order three-point boundary value problem for Laplacian. Abstr. Appl. Anal. 2013, 912576 (2013)
    • 16. Zhao, D., Wang, H., Ge, W.: Existence of triple positive solutions to a class of p-Laplacian boundary value problems. J. Math. Anal. Appl....
    • 17. Bai, C.: Existence and uniqueness of solutions for fractional boundary value problems with p-Laplacian operator. Adv. Differ. Equ. 2018,...
    • 18. Baitiche, Z., Derbazi, C., Wang, G.: Monotone iterative method for nonlinear fractional p-Laplacian differential equation in terms of...
    • 19. Derbazi, C., Baitiche, Z., Abdo, M.S., Shah, K., Abdalla, B., Abdeljawad, T.: Extremal solutions of generalized Caputo-type fractional-order...
    • 20. Dishlieva, K.G.: Differentiability of solutions of impulsive differential equations with respect to the impulsive perturbations. Nonlinear...
    • 21. Dai, B., Su, H., Hu, D.: Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse....
    • 22. Shen, J., Li, J.: Existence and global attractivity of positive periodic solutions for impulsive predatorprey model with dispersion and...
    • 23. Bonanno, G., Rodríguez-López, R., Tersian, S.: Existence of solutions to boundary value problem for impulsive fractional differential...
    • 24. Cao, J., Chen, H.: Impulsive fractional differential equations with nonlinear boundary conditions. Math. Comput. Model. 55(3–4), 303–311...
    • 25. Abuasbeh, K., Kanwal, A., Shafqat, R., Taufeeq, B., Almulla, M.A., Awadalla, M.: A method for solving time-fractional initial boundary...
    • 26. Awadalla, M., Subramanian, M., Abuasbeh, K.: Existence and Ulam-Hyers stability results for a system of coupled generalized Liouville-Caputo...
    • 27. Arab, M., Awadalla, M., Manigandan, M., Abuasbeh, K., Mahmudov, N.I., Gopal, T.N.: On the existence results for a mixed hybrid fractional...
    • 28. Al Elaiw, A., Manigandan, M., Awadalla, M., Abuasbeh, K.: Existence results by Monch’s fixed point theorem for a tripled system of sequential...
    • 29. Linda, M., Tahar, B., Rafik, G., Mohamad, B.: Existence of weak solutions for p-Laplacian problem with impulsive effects. Appl. Sci. 22,...
    • 30. Liu, Z., Lu, L., Szántó, I.: Existence of solutions for fractional impulsive differential equations with p-Laplacian operator. Acta Math....
    • 31. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
    • 32. Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier,...
    • 33. Kilbas, A.A., Marichev, O.I., Samko, S.G.: Fractional Integrals and Derivatives. Gordon and Breach, Switzerland (1993)
    • 34. Ledesma, C.E.T., Nyamoradi, N.: (k,ψ)-Hilfer variational problem. J. Elliptic Parabol. Equ. 8, 681– 709 (2022)
    • 35. ElMfadel, A., Melliani, S., Elomari, M.H.: Existence and uniqueness results for ψ-Caputo fractional boundary value problems involving...
    • 36. Guo, D., Sun, J., Liu, Z.: Functional Methods for Nonlinear Ordinary Differential Equations. Shandong Science and Technology Press, Jinan...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno