Ir al contenido

Documat


Spreading Speed in an Asymptotic Autonomous System with Application to a Diffusive Stage-Structured SLIRM Model

  • Guo Lin [1] ; Haiqin Wei [1]
    1. [1] Lanzhou University

      Lanzhou University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This article studies the spreading properties in an asymptotic autonomous noncooperative system that can be regarded as an epidemic model or a predator–prey system. In particular, due to the effect of nonlocal delay, it is possible that the system does not satisfy the comparison principle for mixed quasimonotone systems.

      When the initial value has proper decaying behavior, we obtain a constant spreading speed of solutions. Finally, the main result is applied to a stage-structured susceptiblelatent-infected-recovered-matured epidemic model to show its spreading feature by presenting the spreading speed about the susceptible and the infected.

  • Referencias bibliográficas
    • 1. Ai, S., Du, Y., Jiao, Y., Peng, R.: Traveling wave solutions of a class of multi-species non-cooperative reaction–diffusion systems. Nonlinearity...
    • 2. Ambrosio, B., Ducrot, A., Ruan, S.: Generalized traveling waves for time-dependent reaction–diffusion systems. Math. Ann. 381, 1–27 (2021)
    • 3. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Goldstein, J.A....
    • 4. Brown, K.J., Carr, J.: Deterministic epidemic waves of critical velocity. Math. Proc. Camb. Philos. Soc. 81, 431–433 (1977)
    • 5. Choi, W., Giletti, T., Guo, J.-S.: Persistence of species in a predator–prey system with climate change and either nonlocal or local dispersal....
    • 6. Diekmann, O.: Thresholds and travelling waves for the geographical spread of infection. J. Math. Biol. 69, 109–130 (1978)
    • 7. Ducrot, A.: Convergence to generalized transition waves for some Holling–Tanner prey–predator reaction–diffusion system. J. Math. Pures...
    • 8. Ducrot, A.: Spatial propagation for a two component reaction–diffusion system arising in population dynamics. J. Differ. Equ. 260, 8316–8357...
    • 9. Ducrot, A., Giletti, T., Matano, H.: Spreading speeds for multidimensional reaction–diffusion systems of the prey–predator type. Calc....
    • 10. Fang, J., Zhao, X.-Q.: Existence and uniqueness of traveling waves for non-monotone integral equations with applications. J. Differ. Equ....
    • 11. Gourley, S.A., Kuang, Y.: Wavefronts and global stability in a time-delayed population model with stage structure. Proc. R. Soc. Lond....
    • 12. Hosono, Y., Ilyas, B.: Traveling waves for a simple diffusive epidemic model. Math. Models Methods Appl. Sci. 5, 935–966 (1995)
    • 13. Huang, W., Wu, C.: Non-monotone waves of a stage-structured SLIRM epidemic model with latent period. Proc. R. Soc. Edinb. Sect. A 151,...
    • 14. Lam, K.-Y., Wang, X., Zhang, T.: Traveling waves for a class of diffusive disease-transmission models with network structures. SIAM J....
    • 15. Li, J., Zou, X.: Modeling spatial spread of infectious diseases with a fixed latent period in a spatially continuous domain. Bull. Math....
    • 16. Li, W.-T., Xu, W.-B., Zhang, L.: Traveling waves and entire solutions for an epidemic model with asymmetric dispersal. Discrete Contin....
    • 17. Li, Y., Li, W.-T., Lin, G.: Traveling waves of a delayed diffusive SIR epidemic model. Commun. Pure Appl. Anal. 14, 1001–1022 (2015)
    • 18. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm. Pure Appl. Math....
    • 19. Lou, Y., Zhao, X.-Q.: A reaction–diffusion malaria model with incubation period in the vector population. J. Math. Biol. 62, 543–568 (2011)
    • 20. Martin, R.H., Smith, H.L.: Abstract functional–differential equations and reaction–diffusion systems. Trans. Am. Math. Soc. 321, 1–44...
    • 21. Murray, J.D.: Mathematical Biology. II. Spatial Models and Biomedical Applications, 3rd edn. Springer, New York (2003)
    • 22. Pan, S.: Invasion speed of a predator–prey system. Appl. Math. Lett. 74, 46–51 (2017)
    • 23. Thieme, H.R., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction–diffusion models....
    • 24. Wang, H.: Spreading speeds and traveling waves for non-cooperative reaction–diffusion systems. J. Nonlinear Sci. 21, 747–783 (2011)
    • 25. Wang, X.-S., Wang, H., Wu, J.: Traveling waves of diffusive predator–prey systems: disease outbreak propagation. Discrete Contin. Dyn....
    • 26. Wang, Z.-C., Li, W.-T., Ruan, S.: Entire solutions in bistable reaction–diffusion equations with nonlocal delayed nonlinearity. Trans....
    • 27. Wang, Z.-C., Wu, J.: Travelling waves of a diffusive Kermack–McKendrick epidemic model with non-local delayed transmission. Proc. R. Soc....
    • 28. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)
    • 29. Wu, S.-L., Pang, L., Ruan, S.: Propagation dynamics in periodic predator–prey systems with nonlocal dispersal. J. Math. Pures Appl. 170,...
    • 30. Wu, S.-L., Zhao, H., Zhang, X., Hsu, C.-H.: Spatial dynamics for a time-periodic epidemic model in discrete media. J. Differ. Equ. 374,...
    • 31. Wu, W., Hu, Z., Zhang, L., Teng, Z.: Wave propagation in a diffusive epidemic model with demography and time-periodic coefficients. Z....
    • 32. Xiao, Y., Chen, L., ven den Bosch, F.: Dynamical behavior for a stage-structured SIR infectious disease model. Nonlinear Anal. Real World...
    • 33. Xu, W.-B., Li, W.-T., Lin, G.: Nonlocal dispersal cooperative systems: acceleration propagation among species. J. Differ. Equ. 268, 1081–1105...
    • 34. Xu, Z., Xiao, D.: On uniqueness of traveling waves for a reaction diffusion equation with spatiotemporal delay. J. Differ. Equ. 291, 195–219...
    • 35. Yi, T., Chen, Y., Wu, J.: Unimodal dynamical systems: comparison principles, spreading speeds and travelling waves. J. Differ. Equ. 254,...
    • 36. Zhao, M., Yuan, R., Ma, Z., Zhao, X.: Spreading speeds for the predator–prey system with nonlocal dispersal. J. Differ. Equ. 316, 552–598...
    • 37. Zhou, J., Li, J., Wei, J., Tian, L.: Wave propagation in a diffusive SAIV epidemic model with time delays. Eur. J. Appl. Math. 33, 674–700...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno