Ir al contenido

Documat


Bazykin’s Predator–Prey Model Includes a Dynamical Analysis of a Caputo Fractional Order Delay Fear and the Effect of the Population-Based Mortality Rate on the Growth of Predators

  • G. Ranjith Kumar [2] ; K. Ramesh [2] ; Aziz Khan [1] ; K. Lakshminarayan [3] ; Thabet Abdeljawad [4]
    1. [1] Prince Sultan University

      Prince Sultan University

      Arabia Saudí

    2. [2] Anurag University
    3. [3] Vidya Jyothi Institute of Technology
    4. [4] Sefako Makgatho Health Sciences University, Kyung Hee Universit, Prince Sultan University, China Medical University,
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-00981-6
  • Enlaces
  • Resumen
    • In this paper, we investigate a system of two differential equations of fractional order for the fear effect in prey-predator interactions, in which the density of predators controls the mortality pace of the prey population. The non-integer order differential equation is interpreted in terms of the Caputo derivative, and the development of the non-integer order scheme is described in terms of the influence of memory on population increase. The primary goal of existing research is to explore how the changing aspects of the current scheme are impacted by various types of parameters, including time delay, fear effect, and fractional order. The solutions’ positivity, existence-uniqueness, and boundedness are established with precise mathematical conclusions. The requirements necessary for the local asymptotic stability of different equilibrium points and the global stability of coexistence equilibrium are established.

      Hopf bifurcation occurs in the system at various delay times. The model’s fractionalorder derivatives enhance the model behaviours and provide stability findings for the solutions. We have observed that fractional order plays an important role in population dynamics. Also, Hopf bifurcation for the proposed system have been observed for certain values of order of derivatives. Thus, the stability conditions of the equilibrium points may be changed by changing the order of the derivatives without changing other parametric values. Finally, a numerical simulation is run to verify our conclusions.

  • Referencias bibliográficas
    • 1. Lotka, A.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1925)
    • 2. Volterra, V.: Variazioni e fluttuazioni del numero di individui in specie animali conviventi. Mem. Acad. Lincei. 2, 31–113 (1926)
    • 3. Berryman, A.A.: The origins and evolution of predator-prey theory. Ecology 73, 1530–1535 (1992)
    • 4. Hassel, M.: The Dynamics of Arthropod Predator-Prey Systems. Princeton University Press, Princeton (1978)
    • 5. Creel, S., Christianson, D.: Relationships between direct predation and risk effects. Trends Ecol. Evol. 23(4), 194–201 (2008)
    • 6. Cresswell, W.: Non-lethal effects of predation in birds. Ibis 150(1), 3–17 (2008)
    • 7. Holt, R.H., Davies, Z.G., Staddon, S.: Meta-analysis of the effects of predation on animal prey abundance: evidence from UK vertebrates....
    • 8. Zanette, L.Y., Clinchy, M.: Perceived predation risk reduces the number of off-spring songbirds produce per year. Science 334(6061), 1398–1401...
    • 9. Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator-prey interactions. J. Math. Biol. 73(5), 1–26 (2016)
    • 10. Wang, X., Zou, X.: Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators. Bull. Math. Biol. 79(6),...
    • 11. Sasmal, S.: Population dynamics with multiple Allee effects induced by fear factors - a mathematical study on prey-predator. Appl. Math....
    • 12. Mondal, S., Maiti, A., Samanta, G.P.: Effects of fear and additional food in a delayed predator-prey model. Biophys. Rev. Lett. 13(4),...
    • 13. Mukherjee, D.: Study of fear mechanism in predator-prey system in the presence of competitor for the prey. Ecol. Genet. Genom. 15, 1–22...
    • 14. McCauley, S.J., Rowe, L., Fortin, M.J.: The deadly effects of “nonlethal” predators. Ecology 92, 2043–2048 (2011)
    • 15. Siepielski, A.M., Wang, J., Prince, G.: Non-consumptive predator-driven mortality causes natural selection on prey. Evolution 68(3), 696–704...
    • 16. Mukherjee, D.: Role of fear in predator–prey system with intraspecific competition. Math. Comput. Simul 177, 263–275 (2020)
    • 17. Meng, X., Jiao, J., Chen, L.: The dynamics of an age structured predator–prey model with disturbing pulse and time delays. Nonlinear Anal....
    • 18. Xia, Y., Cao, J., Cheng, S.: Multiple periodic solutions of a delayed stage-structured predator–prey model with nonmonotone functional...
    • 19. Zhang, J.F.: Bifurcation analysis of a modified Holling-Tanner predator–prey model with time delay. Appl. Math. Model. 36(3), 1219–1231...
    • 20. Javidi, M., Nyamoradi, N.: Dynamic analysis of a fractional order prey–predator interaction with harvesting. Appl. Math. Model. 37, 8946–8956...
    • 21. Rivero, M., Trujillo, J., Vazquez, L., Velasco, M.: Fractional dynamics of populations. Appl. Math. Comput. 218(3), 1089–1095 (2011)
    • 22. El-Sayed, A., El-Mesiry, A.E.M., El-Saka, H.A.A.: On the fractional order logistic equation. Appl. Math. Lett. 20(7), 817–823 (2007)
    • 23. Rihan, F.A., Abdel Rahman, D.H.: Delay differential model for tumor-immune dynamics with HIV infection of CD+t-cells. Int. J. Comput....
    • 24. Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413–3442 (2003)
    • 25. Machado, J.: Entropy analysis of integer and fractional dynamical systems. Non-linear Dyn. 62(1), 371–378 (2010)
    • 26. Caputo, M.: Linear models of dissipation whose q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13(5), 529–539 (1967)
    • 27. Ghaziani, R., Alidousti, J., Eshkaftaki, A.B.: Stability and dynamics of a fractional order Leslie-Gower prey-predator model. Appl. Math....
    • 28. Matouk, A.E., Elsadany, A.A.: Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model. Nonlinear...
    • 29. Moustafa, M., Mohd, M.H., Ismail, A.I.: Dynamical analysis of a fractional-order RosenzweigMacarthur model incorporating a prey refuge....
    • 30. Das, M., Samanta, G.P.: A prey-predator fractional order model with fear effect and group defense. Int. J. Dyn. Control. 9, 334–349 (2020)
    • 31. McGehee, E.A., Schutt, N., Vasquez, D.A., Peacock-Lopez, E.: Bifurcations and temporal and spatial patterns of a modified Lotka-Volterra...
    • 32. Kot, M.: Elements of Mathematical Biology. Cambridge University Press, New York (2001)
    • 33. Bazykin, A. D.: Volterra system andMichaelis-Menten equation in: voprosy matematich-eskoi genetiki. Nauka Novosibirsk Russia; 103–43 (1974)
    • 34. Bazykin, A.D., Khibnik, A.I., Krauskopf, B.: Nonlinear Dynamics of Interacting Populations. World Scientific Publishing, Singapore (1998)
    • 35. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1993)
    • 36. Xiao, M., Jiang, G., Cao, J., Zheng,W.: Local bifurcation analysis of a delayed fractional-order dynamic model of dual congestion control...
    • 37. Deng, W., Li, C., Lu, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416...
    • 38. Li, C., Zhang, F.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193, 27–47 (2011)
    • 39. Muth, E.: Transform Methods with Applications to Engineering and Operations Research. PrenticeHall, New Jersey (1977)
    • 40. Khan, A., Alshehri, H.M., Gómez-Aguilar, J.F., Khan, Z.A., Fernández-Anaya, G.: A predator–prey model involving variable-order fractional...
    • 41. Devi, A., Kumar, A., Baleanu, D., Khan, A.: On stability analysis and existence of positive solutions for a general non-linear fractional...
    • 42. Venkatesan, G., Sivaraj, P., Suresh Kumar, P., Balachandran, K.: Asymptotic stability of fractional Langevin systems. J. Appl. Nonlinear...
    • 43. Poovarasan, R., Kumar, P., Nisar, K.S., Govindaraj, V.: The existence, uniqueness, and stability analyses of the generalized Caputo-type...
    • 44. Sene, N.: Fundamental results about the fractional integro-differential equation described with Caputo derivative. Adv. Nonlinear Anal....
    • 45. Thomas, E.: Applied Delay Differential Equations. Springer, New York (2009)
    • 46. Das, M., Maiti, A., Samanta, G.P.: Stability analysis of a prey-predator fractional order model incorporating prey refuge. Ecol. Genet....
    • 47. Das, M., Samanta, G.P.: A delayed fractional order food chain model with fear effect and prey refuge. Math. Comput. Simul 178, 218–245...
    • 48. Das, M., Samanta, G.P.: Evolutionary dynamics of a competitive fractional order model under the influence of toxic substances. SeMA 78,...
    • 49. Samanta, G.: Deterministic, Stochastic and Thermodynamic Modelling of Some Interacting Species. Springer, Singapore (2021)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno