Ir al contenido

Documat


Analysis of a Coupled System of Ã-Caputo Fractional Derivatives with Multipoint–Multistrip Integral Type Boundary Conditions

  • Haroon Niaz Ali Khan [1] ; Akbar Zada [1] ; Ishfaq Khan [1]
    1. [1] University of Peshawar

      University of Peshawar

      Pakistán

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we investigate the existence of solutions for a new coupled system of fractional differential equations that involves ψ-Caputo fractional derivatives equipped with coupled integro multistrip–multipoint boundary conditions. The uniqueness result for the given problem is obtained by utilizing the Banach contraction principle, while the existence results are established with the help of Schaefer’s fixed point theorem under specific assumptions. We also discuss the Ulam–Hyers stability for the problem at hand. Numerical examples are constructed for the illustration of the abstract results.

  • Referencias bibliográficas
    • 1. Abdo, M.S.: Qualitative analyses of ψ-Caputo type fractional integrodifferential equations in Banach spaces. J. Adv. Appl. Comput. Math....
    • 2. Abbas, N., Ali,M., Shatanawi,W.,Mustafa, Z.: Thermodynamic properties of Second-grade micropolar nanofluid flow past an exponential curved...
    • 3. Ahmad, M., Jiang, J., Zada, A., Ali, Z., Fu, Z., Xu, J.: Hyers–Ulam–Mittag–Leffler Stability for a system of fractional neutral differential...
    • 4. Ahmad, B., Kerthikeyan, P., Buvaneswari, K.: Fractional differential equations with coupled slit-strips type integral boundary conditions....
    • 5. Ali, A., Khalid, S., Rahmat, G., Ali, G., Nisar, K.S., Alshahrani, B.: Controllability and Ulam–Hyers stability of fractional order linear...
    • 6. Ahmad, B., Ntouyas, S.K.: A coupled system of nonlocal fractional differential equations with coupled and uncoupled slit-strips type integral...
    • 7. Agarwal, R.P., Assolami, A., Alsaedi, A., Ahmad, B.: Existence results and Ulam–Hyers stability for a fully coupled system of nonlinear...
    • 8. Almeida, R.: A caputo fractional derivative of a function with respect to another function. Common. Nonlinear Sci. Numer. Sumer. 44, 460–481...
    • 9. Ali, S.M., Shatanawi, W., Kassim, M.D., Abdo, M.S., Saleh, S.: Investigating a class of generalized Caputo-type fractional integro-differential...
    • 10. Abbas, N., Shatanawi, W., Hasan, F., Mustafa, Z.: Thermal analysis of MHD Casson–Sutterby fluid flow over exponential stretching curved...
    • 11. Ali Khan, H.N., Zada, A., Popa, I.L., Ben Moussa, S.: Impulsive coupled Langevin ψ-Caputo Fractional Problem with Slit-Strips-Generalized...
    • 12. Bastos, N.: Fractional Calculus on Time Scales (2012)
    • 13. Bekri, Z., Erturk, V.S., Kumar, P., Govindaraj, V.: Some novel analysis of two different Caputo-type fractional-order boundary value problems....
    • 14. Carvalho, A., Pinto, C.M.A.: A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dyn. Cont. 5, 168–186...
    • 15. Debnath, L.: A brief historical introduction to fractional calculus. Int. J. Math. Ed. Sci. Technol. 35, 487–501 (2004)
    • 16. Ding, Y., Wang, Z., Ye, H.: Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Cont. Syst. Technol. 20,...
    • 17. Faieghi, M., Kuntanapreeda, S., Delavari, H., et al.: LMI-based stabilization of a class of fractional order chaotic systems. Nonlinear...
    • 18. Govindaraj, V., Raju, K.G.: Controllability of fractional dynamical systems. A functional analytic approach. MCRF 7(4), 537–562 (2017)
    • 19. Govindaraj, V., Raju, K.G.: Functional approach to observability and controllability of linear fractional dynamical systems. JDSGT 15(2),...
    • 20. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
    • 21. Javidi, M., Ahmad, B.: Dynamic analysis of time fractional order phytoplankton–touic phytoplankton– zooplankton system. Ecol. Model. 318,...
    • 22. Jena, R.M., Chakraverty, S., Nisar, K.S.: Dynamical behavior of rotavirus epidemic model with nonprobabilistic uncertainty under Caputo–Fabrizio...
    • 23. Jadhav, C.P., Dale, T.B., Chinchane, V.L.: On Dirichlet problem of time-fractional advection–diffusion equation. J. Fract. Calc. Nonlinear...
    • 24. Kilbas, A.A., Trujillo, J.J.: Differential equations of fractional order, methods, results and problem. Appl. Anal. 78, 153–192 (2013)
    • 25. Lv, Z., Ahmad, I., Xu, J., Zada, A.: Analysis of a hybrid coupled system Of ψ-Caputo fractional dervatives with generalized slit-strips...
    • 26. Lundqvist, M.: Silicon Strip Detectors for Scanned Multi-slit u-Ray Imaging. Kungl Tekniska Hogskolan, Stockholm (2003)
    • 27. Mellow, T., Karkkainen, L.: On the sound fields of infinitely long strips. J. Acoust. Soc. Am. 130, 153–167 (2011)
    • 28. Morsy, A., Nisar, K.S., Ravichandran, C., Anusha, C.: Sequential fractional order neutral functional integro differential equations on...
    • 29. Nisar, K.S., Anusha, C., Ravichandran, C.: A non-linear fractional neutral dynamic equations: existence and stability results on time...
    • 30. Nisar, K.S., Munusamy, K., Ravichandran, C.: Results on existence of solutions in nonlocal partial functional integrodifferential equations...
    • 31. Poovarasan, R., Kumar, P., Nisar, K.S., Govindaraj, V.: The existence, uniqueness, and stability analyses of the generalized Caputo-type...
    • 32. Poovarasan, R., Kumar, P., Govindaraj, V., Murillo-Arcila, M.: The existence, uniqueness, and stability results for a nonlinear coupled...
    • 33. Rus, I.A.: Ulam stabilities of ordinary differential equations in a Banach space. Carpath. J. Math. 26, 103–107 (2010)
    • 34. Rizwan, R., Zada, A., Wang, U.: Stability analysis of nonlinear implicit fractional Langevin equation with noninstantaneous impulses....
    • 35. Sinan, M., Ansari, K.J., Kanwal, A., Shah, K., Abdeljawad, T., Abdalla, B.: Analysis of the mathematical model of cutaneous Leishmaniasis...
    • 36. Vijayaraj, V., Ravichandran, C., Nisar, K.S., Valliammal, N., Logeswari, K., Albalawi, W., AbdelAty, A.: An outlook on the controllability...
    • 37. Wang, G., Ahmad, B., Zhang, L.: Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order....
    • 38. Wang, J., Zada, A., Li, W.: Ulams-type stability of first-order impulsive differential equations with variable delay in quasi-Banach spaces....
    • 39. Yadav, P., Jahan, S., Shah, K., Peter, O.J., Abdeljawad, T.: Fractional-order modelling and analysis of diabetes mellitus: utilizing the...
    • 40. Yan, R., Sun, S., Lu, H., Zhao, Y.: Existence of solutions for fractional differential equations with integral boundary condition. Adv....
    • 41. Zada, A., Ali, W., Farina, S.: Ulam–Hyers stability of nonlinear differential equations with fractional integrable impulsis. Math. Methods...
    • 42. Zada, A., Ali, S., Li, Y.: Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral...
    • 43. Zeidler, E.: Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators. Springer, Berlin (2013)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno