Ir al contenido

Documat


Comments on: Shape-based functional data analysis III

  • J. E. Borgert [1] ; J. S. Marron [1]
    1. [1] University of North Carolina at Chapel Hill

      University of North Carolina at Chapel Hill

      Township of Chapel Hill, Estados Unidos

  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 33, Nº. 1, 2024, págs. 66-70
  • Idioma: inglés
  • DOI: 10.1007/s11749-023-00914-6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This discussion paper applauds the authors for their impactful contribution to functional data analysis (FDA). Their primary insight lies in a formal mathematical definition of the “shape” of a curve, which they connect to familiar intuitive notions through a number of examples. Notably, the paper highlights the pitfalls of less well-thought-out curve registration approaches. The authors’ application of COVID-19 data enriches the discussion, highlighting the work’s practical relevance. We discuss connections of this work with object-oriented data analysis and propose enhancements to the authors’ shape-based functional principal component analysis. Additionally, we illustrate the practical significance of adaptive alignment with an example from our own research.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno