Suecia
In this paper we obtain new estimates for bilinear pseudodifferential operators with symbol in the class BS_{1,1}^m, when both arguments belong to Triebel-Lizorkin spaces of the type F_{p,q}^{n/p}({\mathbb {R}}^n). The inequalities are obtained as a consequence of a refinement of the classical Sobolev embedding F^{n/p}_{p,q}({\mathbb {R}}^n)\hookrightarrow \textrm{bmo}({\mathbb {R}}^n) , where we replace \textrm{bmo}({\mathbb {R}}^n) by an appropriate subspace which contains L^\infty ({\mathbb {R}}^n). As an application, we study the product of functions on F_{p,q}^{n/p}({\mathbb {R}}^n) when 1p \infty, where those spaces fail to be multiplicative algebras.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados