Ir al contenido

Documat


Dynamics of excitable cells: spike-adding phenomena in action

  • Roberto Barrio [1] ; Santiago Ibáñez [2] ; Jorge A. Jover-Galtier [1] ; Álvaro Lozano [1] ; M. Ángeles Martínez [1] ; Ana Mayora-Cebollero [1] ; Carmen Mayora-Cebollero [1] ; Lucía Pérez [2] ; Sergio Serrano [1] ; Rubén Vigara [1]
    1. [1] Universidad de Zaragoza

      Universidad de Zaragoza

      Zaragoza, España

    2. [2] Universidad de Oviedo

      Universidad de Oviedo

      Oviedo, España

  • Localización: SeMA Journal: Boletín de la Sociedad Española de Matemática Aplicada, ISSN-e 2254-3902, ISSN 2254-3902, Vol. 81, Nº. Extra 1, 2024, págs. 113-146
  • Idioma: inglés
  • DOI: 10.1007/s40324-023-00328-2
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the dynamics of action potentials of some electrically excitable cells: neurons and cardiac muscle cells. Bursting, following a fast–slow dynamics, is the most characteristic behavior of these dynamical systems, and the number of spikes may change due to spike-adding phenomenon. Using analytical and numerical methods we give, by focusing on the paradigmatic 3D Hindmarsh–Rose neuron model, a review of recent results on the global organization of the parameter space of neuron models with bursting regions occurring between saddle-node and homoclinic bifurcations (fold/hom bursting).We provide a generic overview of the different bursting regimes that appear in the parametric phase space of the model and the bifurcations among them. These techniques are applied in two realistic frameworks:

      insect movement gait changes and the appearance of Early Afterdepolarizations in cardiac dynamics.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno