Estudiamos la estabilización uniforme de una clase de sistemas Timoshenko con carga puntual en el extremo libre de la viga. Nuestro resultado principal es demostrar que el semigrupo asociado a este modelo no es exponencialmente estable. Además, demostramos que el semigrupo decae polinomialmente a cero. Cuando el mecanismo de amortiguación es efectivo solo en el límite del ángulo de rotación, la solución también decae polinomialmente con una tasa que depende de los coeficientes del problema. El objetivo de este trabajo es presentar de forma didáctica los resultados contenidos en el artículo [9], usando la teoría de semigrupos vista en [10] y también contribuir con la parte numérica vista en [1].
We studied the uniform stabilization of a class of Timoshenko systems with tip load at the free end of the beam. Our main result is to prove that the semigroup associated to this model is not exponentially stable. Moreover, we prove that the semigroup decays polynomially to zero. When the damping mechanism is efective only on the boundary of the rotational angle, the solution also decays polynomially with rate depending on the coecients of the problem. The objective of this work is to present in a didactic way the results obtained in the article [9], using the theory of semigroups used in [10] and also contribute with the numerical part seen in [1]
© 2008-2024 Fundación Dialnet · Todos los derechos reservados