Ir al contenido

Documat


Muestreo y comunicación: impacto en el control de formaciones en sistemas multi-robot heterogéneos

  • Mañas-Álvarez, Francisco-José [1] ; Guinaldo, María [1] Árbol académico ; Dormido, Raquel [1] Árbol académico ; Dormido, Sebastián [1] Árbol académico
    1. [1] Universidad Nacional de Educación a Distancia

      Universidad Nacional de Educación a Distancia

      Madrid, España

  • Localización: Revista iberoamericana de automática e informática industrial ( RIAI ), ISSN-e 1697-7920, Vol. 21, Nº. 2, 2024, págs. 125-136
  • Idioma: español
  • DOI: 10.4995/riai.2023.20155
  • Títulos paralelos:
    • Sampling and communication: impact on formation control in heterogeneous multi-robot systems
  • Enlaces
  • Resumen
    • español

      Este trabajo presenta el análisis del efecto de la frecuencia de muestreo y comunicación en un sistema multi-robot (SMR) en su desempeño temporal y en la carga computacional. El sistema experimental está compuesto por robots móviles del tipo Khepera IV y robots aéreos del tipo Crazyflie 2.1. El análisis se realiza sobre el movimiento del SMR desde unas condiciones iniciales hasta una formación deseada, que se define en base a un conjunto de distancias relativas deseadas entre agentes. Se evalúan tres escenarios en relación a la arquitectura del nivel de control: centralizado, distribuido en ROS 2 y distribuido a bordo del robot. Se determina la frecuencia mínima operativa para un muestreo periódico, y se presenta un protocolo de muestreo basado en eventos como propuesta para la reducción de transmisiones de mensajes. Para este caso, se determina un umbral constante óptimo, con un desempeño temporal equivalente al muestreo periódico óptimo, pero con una reducción del muestreo de un 80%.

    • English

      This work presents the analysis of the sampling an communication frequencies in a multi-robot system (MRS) and its effect over the temporal performance and computational load. The experimental system is composed of mobile robots (the Khepera IV), and a type of aerial robots, the Crazyflie 2.1. The analysis is performed for the formation control of the MRS from initial conditions to a desired formation, which is defined in terms of relative distances between agents. Three scenarios regarding the control architecture are evaluated: centralized, distributed in ROS 2, and distributed onboard the robot. The minimum operating frequency for periodic sampling is determined, and an event-based sampling protocol is presented to reduce the number of transmitted messages. In this case, the optimal constant threshold that provides an equivalent temporal performance is determined, but with a reduction in the number of samples of around 80%.

  • Referencias bibliográficas
    • Amsters, R., Slaets, P., 2020. Turtlebot 3 as a robotics education platform. In: Robotics in Education. Springer, Cham, Switzerland, pp. 170-181....
    • Anderson, B. D., Yu, C., Fidan, B., Hendrickx, J. M., 2008. Rigid graph control architectures for autonomous formations. IEEE Control Systems...
    • Aranda, M., López-Nicolás, G., Sagüés, C., Mezouar, Y., 2015. Formation control of mobile robots using multiple aerial cameras. IEEE Transactions...
    • Aranda-Escolastico, E., Guinaldo, M., Heradio, R., Chacon, J., Vargas, H., Sánchez, J., Dormido, S., 2020. Event-based control: A bibliometric...
    • Bansal, S., Akametalu, A. K., Jiang, F. J., Laine, F., Tomlin, C. J., 2016. Learning quadrotor dynamics using neural network for flight control....
    • Barra, J., Scorletti, G., Lesecq, S., Zarudniev, M., Blanco, E., 2020. Attraction domain estimation of linear controllers for the attitude...
    • Bogdan, P., Marculescu, R., 2011. Towards a science of cyber-physical systems design. In: 2011 IEEE/ACM Second international conference on...
    • Budaciu, C., Botezatu, N., Kloetzer, M., Burlacu, A., 2019. On the evaluation of the crazyflie modular quadcopter system. In: 2019 24th IEEE...
    • Chee, K. Y., Jiahao, T. Z., Hsieh, M. A., 2022. Knode-mpc: A knowledge-based data-driven predictive control framework for aerial robots. IEEE...
    • Cornejo, J., Magallanes, J., Denegri, E., Canahuire, R., 2018. Trajectory tracking control of a differential wheeled mobile robot: a polar...
    • Cortés, J., Egerstedt, M., 2017. Coordinated control of multi-robot systems: A survey. SICE Journal of Control, Measurement, and System Integration...
    • Didier, A., Parsi, A., Coulson, J., Smith, R. S., 2021. Robust adaptive model predictive control of quadrotors. In: 2021 European Control...
    • Fidan, B., Yu, C., Anderson, B. D., 2007. Acquiring and maintaining persistence of autonomous multi-vehicle formations. IET Control Theory...
    • Garcia, G. A., Kim, A. R., Jackson, E., Keshmiri, S. S., Shukla, D., 2017. Modeling and flight control of a commercial nano quadrotor. In:...
    • Giernacki, W., Rao, J., Sladic, S., Bondyra, A., Retinger, M., Espinoza-Fraire, T., 2022. Dji tello quadrotor as a platform for research and...
    • Giernacki, W., Skwierczynsky, M., Witwicki, W., Wronski, P., Kozierski, P., 2017. Crazyflie 2.0 quadrotor as a platform for research and education...
    • Grasso, P., Innocente, M. S., Tai, J. J., Haas, O., Dizqah, A. M., 2022. Analysis and accuracy improvement of uwb-tdoa-based indoor positioning...
    • Guinaldo, M., Dimarogonas, D. V., Johansson, K. H., Sánchez, J., Dormido, S., 2013. Distributed event-based control strategies for interconnected...
    • Guinaldo, M., Sánchez, J., Dormido, S., 2017. Control en red basado en eventos: de lo centralizado a lo distribuido. Revista Iberoamericana...
    • Hasseni, S.-E.-I., Abdou, L., Glida, H.-E., 2021. Parameters tuning of a quadrotor pid controllers by using nature-inspired algorithms. Evolutionary...
    • Heemels, W. P., Johansson, K. H., Tabuada, P., 2012. An introduction to eventtriggered and self-triggered control. In: 2012 IEEE 51st IEEE...
    • Heikkinen, J., Minav, T., Stotckaia, A. D., 2017. Self-tuning parameter fuzzy pid controller for autonomous differential drive mobile robot....
    • Krick, L., Broucke, M. E., Francis, B. A., 2009. Stabilisation of infinitesimally rigid formations of multi-robot networks. International...
    • Lamraoui, H. C., Qidan, Z., Benrabah, A., 2017. Dynamic velocity tracking control of differential-drive mobile robot based on ladrc. In: 2017...
    • Leonard, N. E., Paley, D. A., Lekien, F., Sepulchre, R., Fratantoni, D. M., Davis, R. E., 2007. Collective motion, sensor networks, and ocean...
    • Mañas-Álvarez, F. J., Guinaldo, M., Dormido, R., Dormido-Canto, S., 2023. Scalability of cyber-physical systems with real and virtual robots...
    • Mañas-Álvarez, F.-J., Guinaldo, M., Dormido, R., Socas, R., Dormido, S., 2022. Formation by consensus in heterogeneous robotic swarms with...
    • Mañas-Álvarez, F.-J., Guinaldo, M., Dormido, R., Dormido, S., 2023. Robotic park: Multi-agent platform for teaching control and robotics....
    • Nguyen, N. P., Lee, B. H., Xuan-Mung, N., Ha, L. N. N. T., Jeong, H. S., Lee, S. T., Hong, S. K., 2022. Persistent charging system for crazyflie...
    • Oh, K.-K., Park, M.-C., Ahn, H.-S., 2015. A survey of multi-agent formation control. Automatica 53, 424-440. https://doi.org/10.1016/j.automatica.2014.10.022
    • Pichierri, L., Testa, A., Notarstefano, G., 2023. Crazychoir: Flying swarms of crazyflie quadrotors in ros 2. IEEE Robotics and Automation...
    • Ren, W., Sorensen, N., 2008. Distributed coordination architecture for multirobot formation control. Robotics and Autonomous Systems 56 (4),...
    • Silano, G., Aucone, E., Iannelli, L., 2018. Crazys: a software-in-the-loop platform for the crazyflie 2.0 nano-quadcopter. In: 2018 26th Mediterranean...
    • Soares, J. M., Navarro, I., Martinoli, A., 2016. The khepera iv mobile robot: performance evaluation, sensory data and software toolbox. In:...
    • Stefek, A., Pham, V. T., Krivanek, V., Pham, K. L., 2021. Optimization of fuzzy logic controller used for a differential drive wheeled mobile...
    • Taffanel, A., Rousselot, B., Danielsson, J., McGuire, K., Richardsson, K., Eliasson, M., Antonsson, T., H¨onig, W., 2021. Lighthouse positioning...
    • Vázquez, U., González-Sierra, J., Fernández-Anaya, G., Hernández-Martínez, E. G., 2021. Análisis del desempeño de un control pid de orden...
    • Vicon Motion Systems, 2022. Accuracy in motion. [Consulta el 01-07-2023]. URL: https://www.vicon.com/wp-content/uploads/2022/07/Vicon-Metrology-Solutions.pdf
    • Vágner, M., Palkovics, D., Kovács, L., 2022. 3d localization and data quality estimation with marvelmind. In: 2022 IEEE 2nd Conference on...
    • Zekry, O. H., Attia, T., Hafez, A. T., Ashry, M., 2023. Pid trajectory tracking control of crazyflie nanoquadcopter based on genetic algorithm....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno