Ir al contenido

Documat


Approximate controllability of non-instantaneous impulsive stochastic integrodifferential equations driven by Rosenblatt process via resolvent operators

  • Autores: Essozimna Kpizim, Bertin Dehigbe, Ramkumar Kasinathan, Ravikumar Kasinathan, Mamadou Abdoul Diop
  • Localización: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 25, Nº. 3, 2023, págs. 467-495
  • Idioma: inglés
  • DOI: 10.56754/0719-0646.2503.467
  • Enlaces
  • Resumen
    • español

      Resumen En este trabajo investigamos la existencia de una solución mild y la controlabilidad aproximada de ecuaciones integro-diferenciales estocásticas no-instantáneas impulsivas dirigidas por el proceso de Rosenblatt en espacios de Hilbert con el parámetro de Hurst H ∈ (1/2, 1). Logramos este resultado usando la teoría de semigrupos de operadores lineales acotados, la teoría del operador resolvente de Grimmer y análisis estocástico. Usando los teoremas de punto fijo de Krasnoselskii y Schauder, demostramos la existencia de soluciones mild y la controlabilidad aproximada del sistema. Finalmente, un ejemplo muestra el potencial para resultados significativos.

    • English

      Abstract In this work, we investigate the existence of a mild solution and the approximate controllability of non-instantaneous impulsive stochastic integrodifferential equations driven by the Rosenblatt process in Hilbert space with the Hurst parameter H ∈ (1/2, 1). We achieve the result using the semigroup theory of bounded linear operators, Grimmer’s resolvent operator theory, and stochastic analysis. Using Krasnoselskii’s and Schauder’s fixed point theorems, we demonstrate the existence of mild solutions and the approximate controllability of the system. Finally, an example shows the potential for significant results.

  • Referencias bibliográficas
    • Abid, S. H.,Hasan, S. Q.,Quaez, U. J.. (2015). Approximate controllability of fractional Sobolev type stochastic differential equations driven...
    • Abry, P.,Pipiras, V.. (2006). Wavelet-based synthesis of the Rosenblatt process. Signal Process.. 86. 2326
    • Anguraj, A.,Vinodkumar, A.. (2009). Existence, uniqueness and stability results of impulsive stochastic semilinear neutral functional differential...
    • Bashirov, A. E.,Mahmudov, N. I.. (1999). On concepts of controllability for deterministic and stochastic systems. SIAM J. Control Optim.....
    • Bayour, B.,Torres, D. F. M.. (2017). Existence of solution to a local fractional nonlinear differential equation. J. Comput. Appl. Math.....
    • Caraballo, T.,Liu, K.. (1999). Exponential stability of mild solutions of stochastic partial differential equations with delays. Stochastic...
    • Chalishajar, D.,Kasinathan, R.,Kasinathan, R.,Cox, G.. (2022). Existence uniqueness and stability of nonlocal neutral stochastic differential...
    • Chalishajar, D.,Kasinathan, R.,Kasinathan, R.,Diop, M. A.. (2022). Optimal control for neutral stochastic systems with infinite time delay...
    • Cui, J.,Yan, L.. (2011). Existence result for fractional neutral stochastic integro-differential equations with infinite delay. J. Phys. A....
    • Curtain, R. F.,Falb, P. L.. (1971). Stochastic differential equations in Hilbert space. J. Differential Equations. 10. 412
    • Prato, G. Da,Zabczyk, J.. (2014). Stochastic equations in infinite dimensions. 2. Cambridge University Press. Cambridge, England.
    • Debbouche, A.,Antonov, V.. (2017). Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control...
    • Desch, W.,Grimmer, R.,Schappacher, W.. (1984). Some considerations for linear integrodifferential equations. Journal of Mathematical Analysis...
    • Dhayal, R.,Malik, M.,Abbas, S.. (2021). Approximate and trajectory controllability of fractional stochastic differential equation with non-instantaneous...
    • Dieye, M.,Diop, M. A.,Ezzinbi, K.. (2017). On exponential stability of mild solutions for some stochastic partial integrodifferential equations....
    • Dineshkumar, C.,Udhayakumar, R.,Vijayakumar, V.,Nisa, K. S.. (2021). A discussion on the approximate controllability of Hilfer fractional...
    • Diop, M. A.,Ezzinbi, K.,Zene, M. M.. (2016). Existence and stability results for a partial impulsive stochastic integro-differential equation...
    • Dung, N. T.. (2015). Stochastic Volterra integro-differential equations driven by fractional Brownian motion in a Hilbert space. Stochastics....
    • Farahi, S.,Guendouzi, T.. (2014). Approximate controllability of fractional neutral stochastic evolution equations with nonlocal conditions....
    • Grimmer, R. C.. (1982). Resolvent operators for integral equations in a Banach space. Trans. Amer. Math. Soc.. 273. 333
    • Hamit, M. H. M.,Barka, I. M.,Diop, M. A.,Ezzinbi, K.. (2019). Controllability of impulsive stochastic partial integrodifferential equation...
    • Hassan, M. H. M.,Diop, M. A.,Kasinathan, R.,Kasinathan, R.. (2020). Existence, global attracting sets and exponential decay of solution to...
    • Kasinathan, R.,Kasinathan, R.,Hamit, M. H. M.,Diop, M. A.. (2020). Exponential behavior of neutral impulsive stochastic integro-differential...
    • Kolmogoroff, A. N.. (1940). Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C. R. (Doklady) Acad. Sci. URSS...
    • Liang, J.,Liu, J. H.,Xiao, T.-J.. (2008). Nonlocal problems for integrodifferential equations. Dyn. Contin. Discrete Impuls. Syst. Ser. A...
    • Lin, A.,Ren, Y.,Xia, N.. (2010). On neutral impulsive stochastic integro-differential equations with infinite delays via fractional operators....
    • Mahmudov, N. I.,Denker, A.. (2000). On controllability of linear stochastic systems. Internat. J. Control. 73. 144
    • Mandelbrot, B. B.,Ness, J. W. Van. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Rev.. 422
    • Mane, A.,Bete, K. H.,Ogouyandjou, C.,Diop, M. A.. (2018). Controllability results for a nonlocal impulsive neutral stochastic functional integro-differential...
    • Mokkedem, F. Z.,Fu, X.. (2014). Approximate controllability of semi-linear neutral integro-differential systems with finite delay. Appl. Math....
    • Radhakrishnan, B.,Balachandran, K.. (2011). Controllability of impulsive neutral functional evolution integrodifferential systems with infinite...
    • Sakthivel, R.,Ganesh, R.,Ren, Y.,Anthoni, S. M.. (2013). Approximate controllability of nonlinear fractional dynamical systems. Commun. Nonlinear...
    • Sakthivel, R.,Ren, Y.,Mahmudov, N. I.. (2011). On the approximate controllability of semilinear fractional differential systems. Comput. Math....
    • Shen, G.,Ren, Y.. (2015). Neutral stochastic partial differential equations with delay driven by Rosenblatt process in a Hilbert space. J....
    • Shen, G.,Sakthivel, R.,Ren, Y.,Li, M.. (2020). Controllability and stability of fractional stochastic functional systems driven by Rosenblatt...
    • Taqqu, M.. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Advances in Appl. Probability. 7. 249
    • Tudor, C. A.. (2008). Analysis of the Rosenblatt process. ESAIM Probab. Stat.. 12. 230
    • Varshini, S.,Banupriya, K.,Ramkumar, K.,Ravikumar, K.. (2023). Existence, uniqueness and stability results for neutral stochastic differential...
    • Yan, Z.,Lu, F.. (2017). Approximate controllability of a multi-valued fractional impulsive stochastic partial integro-differential equation...
    • Yan, Z.,Yan, X.. (2013). Existence of solutions for impulsive partial stochastic neutral integrodifferential equations with state-dependent...
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno