Ir al contenido

Documat


On a class of fractional 饾憹(路, 路)鈭扡aplacian problems with sub-supercritical nonlinearities

  • Autores: Abdelilah Azghay, Mohammed A. Nassar
  • Localizaci贸n: Cubo: A Mathematical Journal, ISSN 0716-7776, ISSN-e 0719-0646, Vol. 25, N潞. 3, 2023, p谩gs. 387-410
  • Idioma: ingl茅s
  • DOI: 10.56754/0719-0646.2503.387
  • Enlaces
  • Resumen
    • espa帽ol

      Resumen Este art铆culo est谩 dedicado al estudio de una clase de problemas no locales con exponente variable que involucran al operador 𝑝(路, 路)-Laplaciano fraccionario. Bajo condiciones apropiadas se establecen algunos resultados nuevos sobre la existencia y no existencia de soluciones a trav茅s de un enfoque variacional y el m茅todo de fibraci贸n de Pohozaev.

    • English

      Abstract This paper is devoted to study a class of nonlocal variable exponent problems involving fractional 𝑝(路, 路)-Laplacian operator. Under appropriate conditions, some new results on the existence and nonexistence of solutions are established via variational approach and Pohozaev鈥檚 fibering method.n this article, we investigate the Kenmotsu manifold when applied to a D伪-homothetic deformation. Then, given a submanifold in a D伪-homothetically deformed Kenmotsu manifold, we derive the generalized Wintgen inequality. Additionally, we find this inequality for submanifolds such as slant, invariant, and anti-invariant in the same ambient space.

  • Referencias bibliogr谩ficas
    • Abdou, A.,Marcos, A.. (2016). Existence and multiplicity of solutions for a Dirichlet problem involving perturbed p(x)-Laplacian operator....
    • Akkoyunlu, E.,Ayazoglu, R.. (2019). Infinitely many solutions for the stationary fractional p-Kirchhoff problems in RN. Proc. Indian Acad....
    • Alves, C. O.,Barreiro, J. L. P.. (2013). Existence and multiplicity of solutions for a p(x)-Laplacian equation with critical growth. J. Math....
    • Alves, C. O.,Liu, S.. (2010). On superlinear p(x)-Laplacian equations in RN. Nonlinear Anal.. 73. 2566
    • Antontsev, S. N.,Rodrigues, J. F.. (2006). On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat.. 52. 19-36
    • Ayazoglu, R.,Ekincioglu, I.,Alisoy, G.. (2017). Multiple small solutions for p(x)-Schr枚dinger equations with local sublinear nonlinearities...
    • Ayazoglu, R.,Sara莽, Y.,艦ener, S. 艦.,Alisoy, G.. (2021). Existence and multiplicity of solutions for a Schr枚dinger-Kirchhoff type equation...
    • Azroul, E.,Benkirane, A.,Shimi, M.,Srati, M.. (2021). On a class of fractional p(x)-Kirchhoff type problems. Appl. Anal.. 100. 383-402
    • Bahrouni, A.. (2018). Comparison and sub-supersolution principles for the fractional p(x)-Laplacian. J. Math. Anal. Appl.. 458. 1363
    • Bahrouni, A.,R膬dulescu, V. D.. (2018). On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent....
    • Bahrouni, A.,R膬dulescu, V. D.,Winkert, P.. (2020). Robin fractional problems with symmetric variable growth. J. Math. Phys.. 61.
    • Bucur, C.,Valdinoci, E.. (2016). Nonlocal diffusion and applications. Springer, Cham; Unione Matematica Italiana. Bologna, Italy.
    • Cao, X.-F.,Ge, B.,Zhang, B.-L.. (2021). On a class of p(x)-Laplacian equations without any growth and Ambrosetti-Rabinowitz conditions. Adv....
    • Chen, Y.,Levine, S.,Rao, M.. (2006). Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math.. 66. 1383
    • Chung, N. T.. (2013). Multiple solutions for a class of p(x)-Laplacian problems involving concave-convex nonlinearities. Electron. J. Qual....
    • Diening, L.,Harjulehto, P.,H盲st枚, P.,Ru啪i膷ka, M.. (2011). Lebesgue and Sobolev spaces with variable exponents. Springer. Heidelberg, Germany....
    • Dipierro, S.,Ros-Oton, X.,Valdinoci, E.. (2017). Nonlocal problems with Neumann boundary conditions. Rev. Mat. Iberoam.. 33. 377-416
    • Dipierro, S.,Valdinoci, E.. (2021). Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new...
    • Fan, X.. (2009). Remarks on eigenvalue problems involving the p(x)-Laplacian. J. Math. Anal. Appl.. 352. 85-98
    • Fan, X.,Zhao, D.. (2001). On the spaces Lp(x)(惟) and W m,p(x)(惟). J. Math. Anal. Appl.. 263. 424
    • Fiscella, A.,Valdinoci, E.. (2014). A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal.. 94. 156
    • Halsey, T.. (1992). Electrorheological fluids. Science. 258. 761
    • Ho, K.,Kim, Y.-H.. (2019). A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional p(路)-Laplacian....
    • Irzi, N.,Kefi, K.. (2023). The fractional p(., .)-Neumann boundary conditions for the non-local p(., .)-Laplacian operator. Appl. Anal.. 102....
    • Kandilakis, D. A.,Sidiropoulos, N.. (2011). Elliptic problems involving the p(x)-Laplacian with competing nonlinearities. J. Math. Anal. Appl.....
    • Kaufmann, U.,Rossi, J. D.,Vidal, R.. (2017). Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians. Electron. J....
    • Kefi, K.. (2011). p(x)-Laplacian with indefinite weight. Proc. Amer. Math. Soc.. 139. 4351
    • Kirchhoff, G.. (1883). Vorlesungen 眉ber mathematische. Teubner. Leipzig, Germany.
    • Laskin, N.. (2000). Fractional quantum mechanics and L茅vy path integrals. Phys. Lett. A. 268. 298-305
    • Massar, M.,Talbi, M.,Tsouli, N.. (2014). Multiple solutions for nonlocal system of (p(x), q(x))-Kirchhoff type. Appl. Math. Comput.. 242....
    • Medeiros, L. A.,Limaco, J.,Menezes, S. B.. (2002). Vibrations of elastic strings: mathematical aspects. I. J. Comput. Anal. Appl.. 4. 91-127
    • Metzler, R.,Klafter, J.. (2004). The restaurant at the end of the random walk: recent developments in the description of anomalous transport...
    • Pokhozhaev, S. I.. (1990). The fibration method for solving nonlinear boundary value problems. Trudy Mat. Inst. Steklov.. 192. 146
    • Pucci, P.,Saldi, S.. (2017). Asymptotic stability for nonlinear damped Kirchhoff systems involving the fractional p-Laplacian operator. J....
    • Ru啪i膷ka, M.. (2000). Electrorheological fluids: Modeling and mathematical theory. Springer. Heidelberg, Germany.
    • Repov拧, D.. (2015). Stationary waves of Schr枚dinger-type equations with variable exponent. Anal. Appl. (Singap.). 13. 645
    • R膬dulescu, V. D.,Repov拧, D. D.. (2015). Partial differential equations with variable exponents. CRC Press. Boca Raton, FL, USA.
    • Sire, Y.,Valdinoci, E.. (2009). Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result....
    • Xiang, M.,Zhang, B.,Ferrara, M.. (2015). Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian....
    • Zhang, C.,Zhang, X.. (2020). Renormalized solutions for the fractional p(x)-laplacian equation with l1 data. Nonlinear Analysis. 190.
    • Zhang, J.,Yang, D.,Wu, Y.. (2021). Existence results for a Kirchhoff-type equation involving fractional p(x)-Laplacian. AIMS Mathematics....
    • Zhang, L.,Tang, X.,Chen, S.. (2022). Nehari type ground state solutions for periodic Schr枚dinger-Poisson systems with variable growth. Complex...
    • Zhikov, V. V.. (1986). Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat.. 50. 675-710
    • Zuo, J.,An, T.,Fiscella, A.. (2021). A critical Kirchhoff-type problem driven by a p(路)-fractional Laplace operator with variable s(路)-order....
Los metadatos del art铆culo han sido obtenidos de SciELO Chile

Fundaci贸n Dialnet

Mi Documat

Opciones de art铆culo

Opciones de compartir

Opciones de entorno