Ir al contenido

Documat


On ∗-reverse derivable maps

  • Ferreira, Bruno L. M. [1] ; Sandhu, Gurninder [2]
    1. [1] Universidade Tecnológica Federal do Paraná

      Universidade Tecnológica Federal do Paraná

      Brasil

    2. [2] Patel Memorial National College.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 42, Nº. 6, 2023, págs. 1615-1626
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-5905
  • Enlaces
  • Resumen
    • Let R be a ring with involution containing a nontrivial symmetric idempotent element e. Let δ : R → R be a mapping such that δ(ab) = δ(b)a∗ + b∗δ(a) for all a, b ∈ R, we call δ a ∗−reverse derivable map on R. In this paper, our aim is to show that under some suitable restrictions imposed on R, every ∗−reverse derivable map of R is additive.

  • Referencias bibliográficas
    • M. Bresăr, and J. Vukman, “Jordan derivations on prime rings”, Bull. Aust. Math. Soc., vol. 37, no. 3, pp. 321-322, 1988.
    • M. Bresăr, and J. Vukman, “Jordan (θ, φ)-derivations”, Glas. Mat. Ser. III, vol. 26, no. 1-2, pp. 13-17, 1991.
    • M. N. Daif, “When is a multiplicative derivation additive?”, Internat. J. Math. Math. Sci., vol. 14, no. 3, pp. 615-618, 1991.
    • M. N. Daif, and M. S. Tammam-El-Sayiad, “Multiplicative generalized derivations which are additive”, East-West J. Math., vol. 9, no. 1, pp....
    • D. Eremita, and D. Ilisevic, “On additivity of centralisers”, Bull. Aust. Math. Soc., vol. 74, pp. 177-184, 2006.
    • B. L. M. Ferreira, “Jordan elementary maps on alternative division rings”, Serdica Math. Journal, vol. 43, pp. 161-168, 2017.
    • R. N. Ferreira, and B. L. M. Ferreira, “Jordan derivation on alternative rings”, International Journal of Mathematics, Game Theory, and Algebra,...
    • R. N. Ferreira, and B. L. M. Ferreira, “Jordan triple derivation on alternative rings”, Proyecciones (Antofagasta), vol. 37, pp. 169-178,...
    • B. L. M. Ferreira, J. C. M. Ferreira, and H. Guzzo Jr., “Jordan maps on alternative algebras”, JP Journal of Algebra, Number Theory and Applications,...
    • B. L. M. Ferreira, J. C. M. Ferreira, and H. Guzzo Jr., “Jordan Triple Elementary Maps on Alternative Rings”, Extracta Mathematicae, vol....
    • B. L.M. Ferreira, J. C. M. Ferreira, H. Guzzo Jr., “Jordan Triple Maps of Alternative algebras”, JP Journal of Algebra, Number Theory and...
    • J. M. Ferreira, B. L. M. Ferreira, “Additivity of n−multiplicative maps on alternative rings”, Commun. Algebra, vol. 44, pp. 1557-1568, 2016.
    • B. L. M. Ferreira, R. Nascimento, “Derivable maps on alternative rings”, Recen, vol. 16, pp. 1-5, 2014.
    • I. N. Herstein, “Jordan derivations of prime rings”, Proc. Amer. Math. Soc., vol. 8, pp. 1104-1110, 1957.
    • N. Jacobson, Structure of Rings, Amer. Math. Soc., U.S.A., 1964.
    • W. Jing, F. Lu, “Additivity of Jordan (triple) derivations on rings”, Commun. Algebra, vol. 40, pp. 2700-2719, 2012.
    • P. Li, F. Lu, “Additivity of elementary maps on rings”, Commun. Algebra, vol. 32, no. 10, pp. 3725-3737, 2004.
    • W. S. Martindale III, “When are multiplicative mappings additive?”, Proc. Amer. Math. Soc., vol. 21, pp. 695-698, 1969.
    • Y. Wang, “The additivity of multiplicative maps on rings”, Commun. Algebra, vol. 37, pp. 2351-2356, 2009.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno