Ir al contenido

Documat


Algoritmos Evolutivos Multiobjetivo aplicados a la Selección de Características en Microarrays de Datos de Cáncer

  • Dussaut, Julieta Sol [1] ; Ponzoni, Ignacio [1] ; Olivera, Ana Carolina [2] ; Vidal, Pablo Javier [2]
    1. [1] Universidad Nacional del Sur
    2. [2] Universidad Nacional de Cuyo
  • Localización: Entre ciencia e ingeniería, ISSN-e 2539-4169, ISSN 1909-8367, Vol. 14, Nº. 28, 2020, págs. 40-45
  • Idioma: español
  • DOI: 10.31908/19098367.2014
  • Títulos paralelos:
    • Multiobjective Evolutionary Algorithms applied to Feature Selection in Microarrays Cancer Data
  • Enlaces
  • Resumen
    • español

      El análisis de microarrays de expresión de genes es un tópico actual para el diagnóstico y clasificación del cáncer humano. Un microarray de datos de expresión de genes consiste en una matriz de miles de características de las cuales la mayoría es irrelevante para clasificar patrones de expresiones de genes. La elección de un subconjunto mínimo de características para clasificación es una tarea dificultosa. En este trabajo, se realiza una comparación entre dos algoritmos evolutivos multiobjetivo aplicados a conjuntos de expresiones de genes populares en la literatura (linfoma, leucemia y colon). Con el objetivo de remover las características con fuerte correlación se realiza una etapa de pre-procesamiento. Se muestra un análisis extenso y detallado de los resultados obtenidos para los algoritmos multiobjetivo seleccionados.

    • English

      Microarray analysis of gene expression is a current topic for the diagnosis and classification of human cancer. A gene expression data microarray consists of an array of thousands of features of which most are irrelevant for classifying patterns of gene expressions. Choosing a minimal subset of features for classification is a difficult task. In this work, a comparison is made between two multi-objective evolutionary algorithms applied to sets of gene expressions popular in the literature (lymphoma, leukemia and colon). In order to remove the strongly correlated characteristics, a pre-processing stage is performed. An extensive and detailed analysis of the results obtained for the selected multi-objective algorithms is shown.

  • Referencias bibliográficas
    • S. Selvaraj and J. Natarajan, “Microarray data analysis and mining tools,” Bioinformation, vol. 6, no. 3, pp. 95–99, 2011.
    • P. M. Narendra and K. Fukunaga, “A branch and bound algorithm for feature subset selection,” IEEE Transactions on Computers, vol. C-26, no....
    • M. Dash and H. Liu, “Feature selection for classification,” Intelligent data analysis, vol. 1, no. 3, pp. 131–156, 1997.
    • H. Liu and Z. Zhao, “Manipulating data and dimension reduction methods: Feature selection,” in Encyclopedia of Complexity and Systems Science....
    • H. Liu, H. Motoda, R. Setiono, and Z. Zhao, “Feature selection: An ever evolving frontier in data mining,” in Feature Selection in Data Mining,...
    • A. W. Whitney, “A direct method of nonparametric measurement selec-tion,” IEEE Transactions on Computers, vol. 100, no. 9, pp. 1100–1103,...
    • T. Marill and D. Green, “On the effectiveness of receptors in recognition systems,” IEEE transactions on Information Theory, vol. 9, no. 1,...
    • P. Pudil, J. Novovicovˇa,´ and J. Kittler, “Floating search methods in feature selection,” Pattern recognition letters, vol. 15, no. 11, pp....
    • Q. Mao and I. W.-H. Tsang, “A feature selection method for multivariate performance measures,” IEEE Trans. Pattern Anal. Mach. Intell., vol....
    • F. Min, Q. Hu, and W. Zhu, “Feature selection with test cost constraint,” International Journal of Approximate Reasoning, vol. 55, no. 1,...
    • B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutio-nary computation approaches to feature selection,” IEEE Trans. Evol. Comput.,...
    • C. S. R. Annavarapu, S. Dara, and H. Banka, “Cancer microarray data feature selection using multi-objective binary particle swarm optimiza-tion...
    • A. Hasnat and A. U. Molla, “Feature selection in cancer microarray data using multi-objective genetic algorithm combined with correlation...
    • M. M. Mafarja and S. Mirjalili, “Hybrid whale optimization algorithm with simulated annealing for feature selection,” Neurocomputing, vol....
    • A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, Rosenwald, J. C. Boldrick et al., “Distinct types of diffuse large b-cell lymphoma...
    • T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri et al.,...
    • J. S. Dussaut, C. A. Gallo, F. Cravero, M. J. Martínez, J. A. Carballido, and I. Ponzoni, “Gernet: a gene regulatory network tool,” Biosystems,...
    • J. A. Carballido, C. A. Gallo, J. S. Dussaut, and I. Ponzoni, “On evo-lutionary algorithms for biclustering of gene expression data,” Current...
    • P. G. Kumar, T. A. A. Victoire, P. Renukadevi, and D. Devaraj, “Design of fuzzy expert system for microarray data classification using a novel...
    • R. K. Singh and M. Sivabalakrishnan, “Feature selection of gene expression data for cancer classification: a review,” Procedia Computer Science,...
    • S. Shahbeig, M. S. Helfroush, and A. Rahideh, “A fuzzy multi-objective hybrid tlbo–pso approach to select the associated genes with breast...
    • K. Deb, Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, 2001. [24] R. O. Duda, P. E. Hart, and D. G. Stork,...
    • M. Walesiak, A. Dudek, and M. A. Dudek, “clustersim package,” 2011. [26] M. Kuhn, “Caret package,” Journal of Statistical Software, vol. 28,...
    • N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor Non-parametric Regression,” The American Statistician, vol. 46, no. 3, pp. 175–185,...
    • K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,...
    • A. J. Nebro, E. Alba, G. Molina, F. Chicano, F. Luna, and J. J. Durillo, “Optimal antenna placement using a new multi-objective chc algorithm,”...
    • J. J. Durillo and A. J. Nebro, “jMetal: A java framework for multi-objective optimization,” Advances in Engineering Software, vol. 42, pp....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno