Ir al contenido

Documat


Eberlein-Weakly Almost Periodic Solutions for Some Partial Functional Differential Equation with Infinite Delay

  • El Hadi Ait Dads [1] ; Brahim Es-sebbar [2] ; Samir Fatajou [2] ; Zakaria Zizi [2]
    1. [1] Université Cadi Ayyad & Sorbonne Université
    2. [2] Université Cadi Ayyad
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this work, we prove some new results concerning the class of Eberlein weakly almost periodic functions in Stepanov’s sense. We prove that if the forcing term of a partial functional differential equation with infinite delay is Eberlein-weakly almost periodic in Stepanov’s sense, then the solution is even Eberlein-weakly almost periodic. This shows that a less regular almost periodic behavior in the forcing term yields a more regular almost periodic behavior in the solution. The theoretical results are illustrated in the Lotka–Volterra model.

  • Referencias bibliográficas
    • 1. Eberlein, W.F.: Abstract ergodic theorems and weak almost periodic functions. TAMS 67, 217–240 (1949)
    • 2. Ruess, W.M., Summers, W.H.: Integration of asymptotically almost periodic functions and weak asymptotic almost periodicity. Dissertationes...
    • 3. Ruess, W.M., Summers, W.H.: Weak almost periodicity and the strongly ergodic limit theorem for periodic evolution systems. J. Funct. Anal....
    • 4. Ruess, W.M., Summers, W.H.: Weak almost periodic semigroups of operators. Pac. J. Math. 43, 175–193 (1990)
    • 5. Bochner, S.: A new approach to almost periodicity. Proc. Natl. Acad. Sci. USA 48, 2039–2043 (1962)
    • 6. Bochner, S.: Continuous mappings of almost automorphic and almost periodic functions. Proc. Natl. Acad. Sci. USA 52(4), 907–910 (1964)
    • 7. Ait Dads, E.: Contribution à l’étude de l’existence de solutions pseudo presque-périodiques de certaines équations fonctionnelles non linéaires....
    • 8. N’Guérékata, G.M.: Topics in Almost Automorphy. Springer, New York (2005)
    • 9. Diagana, T., N’Guérékata, G.M., Van Minh, N.: Almost automorphic solutions of evolution equations. Proc. Am. Math. Soc. 132, 3289–3298...
    • 10. Kreulich, J.: Eberlein-weakly almost-periodicity and differential equations in Banach spaces. Ph.D. Thesis, University Essen, Germany...
    • 11. Ait Dads, E., Es-sebbar, B., Ezzinbi, K., Ziat, M.: Behavior of bounded solutions for some almost periodic neutral partial functional...
    • 12. Ait Dads, E., Ezzinbi, K., Fatajou, S.: Weakly almost periodic solutions for some differential equations in a Banach space. Nonlinear...
    • 13. Ait Dads, E., Ezzinbi, K., Fatajou, S.: Weakly almost periodic solutions for the inhomogeneous linear equations and periodic processes...
    • 14. Basit, B.: Some problems concerning different types of vector valued almost periodic functions. Dissertationes Mathematics, vol. 338 (1995)
    • 15. Jakubowski, VG.: Nonlinear elliptic-parabolic integro-differential equations with L1-data: existence, uniqueness, asymptotics. Ph.D. thesis,...
    • 16. Ait Dads, E., Ezzinbi, K., Fatajou, S.: Asymptotic behaviour of solutions for some differential equations in Banach spaces. Afr. Diapora...
    • 17. Kreulich, J.: Asymptotic behavior of nonlinear evolution equations in Banach spaces. J. Math. Anal. Appl. 424(2), 1054–1102 (2015)
    • 18. Budde, C., Kreulich, J.: Application of abstract semigroup theory to the asymptotic behavior of C0- semigroups. Complex Anal. Oper. Theory...
    • 19. Kreulich, J.: Asymptotic behavior of evolution systems in arbitrary Banach spaces using general almost periodic splittings. Adv. Nonlinear...
    • 20. Ait Dads, E., Fatajou, S., N’Guérékata, G.M.: Eberlein-weakly almost periodic (in Stepanov-like sense) functions and application. Appl....
    • 21. Es-sebbar, B., Ezzinbi, K.: Stepanov ergodic perturbations for some neutral partial functional differential equations. Math. Methods Appl....
    • 22. Es-sebbar, B., Ezzinbi, K., Khalil, K.: Compact almost automorphic solutions for semilinear parabolic evolution equations. Appl. Anal....
    • 23. Khalil, K., Kostiç, M., Pinto, M.: Stepanov pseudo-almost periodic functions and applications. Math. Methods Appl. Sci. 44(18), 13894–13919...
    • 24. Benkhalti, R., Es-Sebbar, B., Ezzinbi, K.: On a Bohr–Neugebauer property for some almost automorphic abstract delay equations. J. Integral...
    • 25. Kostiç, M.: Weyl-almost periodic solutions and asymptotically Weyl-almost periodic solutions of abstract Volterra integro-differential...
    • 26. Kosti´c,M.: AsymptoticallyWeyl almost periodic functions in Lebesgue spaces with variable exponents. J. Math. Anal. Appl. 498(1), 124961...
    • 27. Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, vol. 1473. Springer...
    • 28. Ezzinbi, K., N’Guerekata, G.M.: Almost automorphic solutions for partial functional differential equations with infinite delay. Semigroup...
    • 29. Ezzinbi, K., Fatajou, S., N’Guérékata, G.M.: Pseudo almost automorphic solutions for some partial functional differential equations with...
    • 30. Adimy, M., Ezzinbi, K., Marquet, C.: Ergodic and weighted pseudo-almost periodic solutions for partial functional differential equations...
    • 31. Ezzinbi, K., Fatajou, S., N’Guerekata, G.M.: Massera-type theorem for the existence of Cn-almostperiodic solutions for partial functional...
    • 32. Adimy, M., Ezzinbi, K., Ouhinou, A.: Variation of constants formula and almost periodic solutions for some partial functional differential...
    • 33. Diagana, T., Henriquez, H.R., Hernandez, E.M.: Almost automorphic mild solution to some partial neutral functional differential equation...
    • 34. Ezzinbi, K., Zabsonre, I.: Pseudo almost periodic solutions of infinite class for some functional differential equations. Appl. Anal....
    • 35. De Leeuw, K., Glicksberg, I.: Applications of almost periodic compactifications. Acta Math. 105, 63–97 (1961)
    • 36. De Leeuw, K., Glicksberg, I.: Almost periodic functions on semigroups. Acta Math. 105, 99–140 (1961)
    • 37. Thieme, H.R.: Semiflows generated by Lipschitz perturbations of non-densely defined operators. Differ. Integral Equ. 3(6), 1035–1066 (1990)
    • 38. Adimy, M., Ezzinbi, K., Ouhinou, A.: Behaviour near hyperbolic stationary solutions for partial functional differential equations with...
    • 39. Adimy, M., Bouzahir, H., Ezzinbi, K.: Existence and stability for some partial neutral functional differential equations. J. Math. Anal....
    • 40. Arendt, W., et al.: Vector-Valued Laplace Transforms and Cauchy Problems. Springer, Basel (2011)
    • 41. Magal, P., Ruan, S.: Theory and Applications of Abstract Semilinear Cauchy Problems. Springer, Basel (2018)
    • 42. Basit, B., Günzler, H.: Spectral criteria for solutions of evolution equations and comments on reduced spectra. arXiv: 1006.2169 (2010)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno