Ir al contenido

Documat


Total Collision in a Four-Body Problem with Jacobi Potential

  • Lennard Bakker [1] ; Manuele Santoprete [2] ; Cristina Stoica [2]
    1. [1] Brigham Young University
    2. [2] Wilfrid Laurier University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study the dynamics of a spatial four-body problem where the bodies maintain a rhombus-shape configuration at all times: two of the bodies of equal mass move in the horizontal plane symmetrically with respect to the origin while another pair of bodies of equal mass move symmetrically opposed along the vertical axis. The bodies interact via the Jacobi potential, an attractive binary potential of the form −1/x2, where x is the distance between the particles. We use appropriate transformations to blow up total collision into a manifold pasted onto the phase space for all levels of energy. We find that the topology of the total collision manifold changes as the angular momentum varies, and also that the dynamics on the collision manifold changes as a function of angular momentum and the mass ratio. We also give a qualitative description of the global flow of the problem for negative energy. This description utilizes knowledge concerning the flow on and near the collision manifold, the presence of an additional integral of motion, and takes advantage of the time-reversing symmetry inherent in the system of equations.

  • Referencias bibliográficas
    • 1. Alvarez-Ramírez, Martha, Medina, Mario: The rhomboidal 4-body problem revisited. Qual. Theory Dyn. Syst. 14(2), 189–207 (2015)
    • 2. Arredondo, John A., Pérez-Chavela, Ernesto, Stoica, Cristina: Dynamics in the Schwarzschild isosceles three body problem. J. Nonlinear...
    • 3. Chen, Kuo-Chang.: Action-minimizing orbits in the parallelogram four-body problem with equal masses. Arch. Rational Mech. Anal. 158(4),...
    • 4. Delgado-Fernández, J., Perez-Chavela, E.: The rhomboidal four body problem. global flow on the total collision manifold, The Geometry of...
    • 5. Devaney, Robert L.: Triple collision in the planar isosceles three body problem. Invent. Math. 60(3), 249–267 (1980)
    • 6. Diacu, Florin N.: The planar isosceles problem for Maneff gravitational law. J. Math. Phys. 34(12), 5671–5690 (1993)
    • 7. Lacomba, Ernesto A.: Perez-Chavela, Ernesto: A compact model for the planar rhomboidal 4-body problem. Celest. Mech. Dyn. Astron. 54(4),...
    • 8. Lacomba, Ernesto A.: Pérez-Chavela, Ernesto: Motions close to escapes in the rhomboidal four body problem. Celest. Mech. Dyn. Astron. 57(3),...
    • 9. McGehee, Richard: Double collisions for a classical particle system with nongravitational interactions. Comment. Math. Helvetici 56(1),...
    • 10. Pa¸sca, Daniel: Stoica, Cristina: On the Manev spatial isosceles three-body problem. Astrophys. Space Sci. 364(1), 17 (2019)
    • 11. Waldvogel, Jörg.: The rhomboidal symmetric four-body problem. Celest. Mech. Dyn. Astron. 113(1), 113–123 (2012)
    • 12. Yan, Duokui: Existence and linear stability of the rhomboidal periodic orbit in the planar equal mass four-body problem. J. Math. Anal....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno