Ir al contenido

Documat


A Test for Global Attractivity of Linear Dynamic Equations with Delay

  • Autores: Nour H.M. Alsharif, Basak Karpuz
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider the delay dynamic equation x(t) + p(t)x τ (t) = 0 for t ∈ [t0,∞)T. (∗) Based on Lyapunov’s method, we study global attractivity of the trivial solution of (∗). Our new result generalizes some well-known results in the theory of difference and differential equations to dynamic equations of the form (∗). We also present some examples on nonstandard time scales to illustrate the importance of the new result.

  • Referencias bibliográficas
    • 1. Akin-Bohner, E., Raffoul, Y.N., Tisdell, C.: Exponential stability in functional dynamic equations on time scales. Commun. Math. Anal....
    • 2. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser Inc, Boston, MA (2001)
    • 3. Braverman, E., Karpuz, B.: Uniform exponential stability of first-order dynamic equations with several delays. Appl. Math. Comput. 218(21),...
    • 4. Braverman, E., Karpuz, B.: On different types of stability for linear delay dynamic equations. Z. Anal. Anwend. 36(3), 343–375 (2017)
    • 5. Du, N.H., Tien, L.H.: On the exponential stability of dynamic equations on time scales. J. Math. Anal. Appl. 331(2), 1159–1174 (2007)
    • 6. Erbe, L.H., Xia, H., Yu, J.S.: Global stability of a linear nonautonomous delay difference equation. J. Differ. Equ. Appl. 1(2), 151–161...
    • 7. Gy ˝ori, I., Pituk, M.: Asymptotic stability in a linear delay difference equation. In: Proceedings of SICDEA, Veszprém, Hungary, 1995,...
    • 8. Karpuz, B.: Volterra theory on time scales. Res. Math. 65(3–4), 263–292 (2014)
    • 9. Karpuz, B.: Asymptotic stability of the complex dynamic equation u − z · u + w · uσ = 0. J. Math. Anal. Appl. 421(1), 925–937 (2015)
    • 10. Karpuz, B., Öcalan, Ö.: Erratum to: “Stability for first order delay dynamic equations on time scales” [Comput. Math. Appl. 53, 1820–1831(2007)]...
    • 11. Karpuz, B., Öcalan, Ö.: Oscillation and nonoscillation of first-order dynamic equations with positive and negative coefficients. Dyn....
    • 12. Krisztin, T.: On stability properties for one-dimensional functional–differential equations. Funkcial. Ekvac. 34(2), 241–256 (1991)
    • 13. Kulenovi´c, M.R.S., Ladas, G., Meimaridou, A.: Stability of solutions of linear delay differential equations. Proc. Am. Math. Soc. 100(3),...
    • 14. Ladas, G., Qian, C., Vlahos, P.N., Yan, J.: Stability of solutions of linear nonautonomous difference equations. Appl. Anal. 41(1–4),...
    • 15. Ladas, G., Sficas, Y.G., Stavroulakis, I.P.: Asymptotic behavior of solutions of retarded differential equations. Proc. Am. Math. Soc....
    • 16. Muroya, Y.: On Yoneyama’s 3/2 stability theorems for one-dimensional delay differential equations. J. Math. Anal. Appl. 247(1), 314–322...
    • 17. Peterson, A.C., Raffoul, Y.N.: Exponential stability of dynamic equations on time scales. Adv. Differ. Equ. 2, 133–144 (2005)
    • 18. Rashford, M., Siloti, J.,Wrolstad, J.: Exponential stability of dynamic equations on time scales. PanAm. Math. J. 17, 39–51 (2007)
    • 19. Shen, J.H., Yu, J.S.: Asymptotic behavior of solutions of neutral differential equations with positive and negative coefficients. J. Math....
    • 20. Wu, H., Zhou, Z.: Stability for first order delay dynamic equations on time scales. Comput. Math. Appl. 53(12), 1820–1831 (2007)
    • 21. Yu, J.S., Cheng, S.S.: A stability criterion for a neutral difference equation with delay. Appl. Math. Lett. 7(6), 75–80 (1994)
    • 22. Yoneyama, T.: On the 32 stability theorem for one-dimensional delay-differential equations. J. Math. Anal. Appl. 125(1), 161–173 (1987)
    • 23. Yoneyama, T.: The 3/2 stability theorem for one-dimensional delay-differential equations with unbounded delay. J. Math. Anal. Appl. 165(1),...
    • 24. Yorke, J.A.: Asymptotic stability for one dimensional differential-delay equations. J. Differ. Equ. 7, 189–202 (1970)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno