Ir al contenido

Documat


On the Menger Probabilistic Bipolar Metric Spaces: Fixed Point Theorems and Applications

  • Gunaseelan Mani [1] ; Balaji Ramalingam [1] ; Sina Etemad [3] ; Ibrahim Avcı [4] ; Shahram Rezapour [2]
    1. [1] Saveetha University

      Saveetha University

      India

    2. [2] China Medical University

      China Medical University

      Taiwán

    3. [3] Azarbaijan Shahid Madani University & Al-Ayen University
    4. [4] Final International University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we introduce a new class of metric spaces called the Menger probabilistic bipolar metric space and define some other notions related to this space. Moreover, we prove some uniqueness fixed point theorems for two cases including the covariant and contravariant maps. These fixed point theorems are new versions of the Banach contraction principle, Kannan theorem, and Reich-type theorem in the context of the Menger probabilistic bipolar metric space. Throughout the paper, we provide some examples to understand the definitions in the better manner. Finally, two applications are given for proving the uniqueness result in the form of an integral equation and a fractional boundary value problem

  • Referencias bibliográficas
    • 1. Nuchpong, C., Ntouyas, S.K., Vivek, D., Tariboon, J.: Nonlocal boundary value problems for ψ-Hilfer fractional-order Langevin equations....
    • 2. Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound....
    • 3. Baleanu, D., Etemad, S., Rezapour, S.: On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions...
    • 4. Ahmad, B., Alnahdi, M., Ntouyas, S.K.: Existence results for a differential equation involving the right Caputo fractional derivative and...
    • 5. Rezapour, S., Etemad, S., Mohammadi, H.: A mathematical analysis of a system of Caputo-Fabrizio fractional differential equations for the...
    • 6. Wattanakejorn, V., Ntouyas, S.K., Sitthiwirattham, T.: On a boundary value problem for fractional Hahn integro-difference equations with...
    • 7. Etemad, S., Shikongo, A., Owolabi, K.M., Tellab, B., Avci, I., Rezapour, S., Agarwal, R.P.: A new fractal-fractional version of giving...
    • 8. Naeem, S., Iqbal, I., Iqbal, B., et al.: Coincidence and fixed points of multivalued F-contractions in generalized metric space with application....
    • 9. Arslan Hojat, A., Naeem, S., Brian, F., Khan, M.S.: C-class function on Khan type fixed point theorems in generalized metric space. Filomat...
    • 10. Amna, K., Naeem, S., Hüseyin, I., Al-Shami, Tareq M., Amna, B., Hafsa, K.: Fixed Point approximation of monotone nonexpansive mappings...
    • 11. Hanan, A., Naeem, S., Mujahid, A.: A natural selection of a graphic contraction transformation in fuzzy metric spaces. J. Nonlinear Sci....
    • 12. Salman, F., Hüseyin, I., Naeem, S.: Fuzzy triple controlled metric spaces and related fixed point results. J. Funct. Spaces (2021). https://doi.org/10.1155/2021/9936992
    • 13. Naeem, S., Mujahid, A., De La Sen, M.: Optimal approximate solution of coincidence point equations in fuzzy metric spaces. Mathematics...
    • 14. Abdul, L., Naeem, S., Mujahid, A.: α-optimal best proximity point result involving proximal contraction mappings in fuzzy metric spaces....
    • 15. Naeem, S., Khalil, J., Fahim, U., Umar, I., Khalil, A., Thabet, A., Manar, A.: A Unique solution of integral equations via intuitionistic...
    • 16. Babak, M., Azhar, H., Vahid, P., Naeem, S., Rogheieh, J.S.: Fixed point results for generalized fuzzy contractive mappings in fuzzy metric...
    • 17. Menger, K.: Statistical metrics. Proc. Natl. Acad. Sci. U.S.A. 28(12), 535–537 (1942)
    • 18. Sehgal, V.M., Bharucha-Reid, A.T.: Fixed points of contraction mappings on probabilistic metric spaces. Math. Syst. Theory. 6, 97–102...
    • 19. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier, New York (1983)
    • 20. Zhou, C., Wang, S., Ciric, L., Alsulami, S.M.: Generalized probabilistic metric spaces and fixed point theorems. Fixed Point Theory Appl....
    • 21. Mutlu, A., Gurdal, U.: Bipolar metric spaces and some fixed point theorems. J. Nonlinear Sci. Appl. 9(9), 5362–5373 (2016). https://doi.org/10.22436/jnsa.009.09.05...
    • 22. Gurdal, U., Mutlu, A., Ozkan, K.: Fixed point results for α −ψ-contractive mappings in bipolar metric spaces. J. Inequal. Special Funct....
    • 23. Kishore, G.N.V., Agarwal, R.P., Rao, B.S., Rao, R.V.N.S.: Caristi type cyclic contraction and common fixed point theorems in bipolar metric...
    • 24. Kishore, G.N.V., Rao, K.P.R., Sombabu, A., Rao, R.V.N.S.: Related results to hybrid pair of mappings and applications in bipolar metric...
    • 25. Rao, B.S., Kishore, G.N.V., Kumar, G.K.: Geraghty type contraction and common coupled fixed point theorems in bipolar metric spaces with...
    • 26. Kishore, G.N.V., Rao, K.P.R., Isik, H., Rao, B.S., Sombabu, A.: Covariant mappings and coupled fixed point results in bipolar metric spaces....
    • 27. Gaba, Y.U., Aphane, M., Aydi, H.: (α, BK)-contractions in bipolar metric spaces. J. Math. 2021, 5562651 (2021). https://doi.org/10.1155/2021/5562651
    • 28. Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 10, 71–76 (1968)
    • 29. Reich, S.: Some remarks concerning contraction mappings. Can. Math. Bull. 14(1), 121–124 (1971). https://doi.org/10.4153/CMB-1971-024-9

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno