Ir al contenido

Documat


Existence and Stability Behaviour of FSDE Driven by Rosenblatt Process with the Application of Visual Perception of Fish Robot

  • C. Mattuvarkuzhali [1] ; P. Balasubramaniam [2]
    1. [1] The Gandhigram Rural Institute - Deemed to be University
    2. [2] Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 2, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-023-00948-z
  • Enlaces
  • Resumen
    • The successive approximation used to derive the existence and stability results of the fractional stochastic differential equation (FSDEs) driven by the Rosenblatt process and numerical simulation are established and applied for the reduction of stochastic disturbance of minimal level in the visual perception trajectory. The Rosenblatt process ensures the stability of FDSEs by mitigating the stochastic disruption in the ocean water environment, including small particles along the visual perception trajectory to the fish robot. The algorithms have several advantages from gaze shift frames, such as terrific quality of randomness, key sensitivity, and minimizing the stochastic disturbance in the visual perception track for different locations. Numerical simulation results manifest real-world applications’ effectiveness, efficiency, and feasibility

  • Referencias bibliográficas
    • 1. Ahmed, H.M.: Non-linear fractional integro-differential systems with nonlocal conditions. IMA J. Math. Control Inform. 33, 389–399 (2016)....
    • 2. Al-Ghafri, K.S., Rezazadeh, H.: Solitons and other solutions of (3 + 1)-dimensional space-time fractional modified KdV–Zakharov–Kuznetsov...
    • 3. Ali Balci, M.: Fractional interaction of financial agents in a stock market network. App. Math. Nonlinear Sci. 5, 317–336 (2020)
    • 4. Balasubramaniam, P., Kumaresan, N., Ratnavelu, K., Tamilalagan, P.: Local and global existence of mild solution for impulsive fractional...
    • 5. Baskonus, H.M.: Complex surfaces to the fractional (2+1)-dimensional Boussinesq dynamical model with local M-derivative. Eur. Phys....
    • 6. Benchaabane, A., Sakhivel, R.: Sobolev-type fractional stochastic differential equations with nonLipschitz coefficient. J. Comput. Appl....
    • 7. Blouhi, T., Caraballo, T., Ouahab, A.: Existence and stability results for semilinear systems of impulsive stochastic differential equations...
    • 8. Boccignone, G.: In Advanced Statistical Method for Eye Movement Analysis and Modelling. Springer,Cham (2019)
    • 9. Chen, H., Zhu, C., Zhang, Y.: A note on exponential stability for impulsive neutral stochastic partial functional differential equations....
    • 10. Chen, H., Lim, C.C., Shi, P.: Stability analysis for stochastic neutral switched systems with time-varying delay. SIAM J. Control Optim....
    • 11. Debbouche, A., Nieto, J.J.: Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls....
    • 12. Deng, S., Shu, X.B., Mao, J.: Existence and exponential stability for impulsive neutral stochastic functional differential equations driven...
    • 13. Duncan, T.E.,Maslowki, B., Pasik Dunca, B.: Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise. Stoch....
    • 14. Evirgen, F., Ucar, S., Ozdemir, N.: System analysis of HIV infection model with CD4+T under nonsingular kernel derivative. Appl. Math....
    • 15. Fedorov, V.E.E., Romanova, E.A.E., Debbouche, A.: Analytic in a sector resolving families of operators for degenerate evolution equations...
    • 16. Fuke, W., Shigeng, H., Mao, X.: Razumikhin-type theorem for neutral stochastic functional differential equations with unbounded delay....
    • 17. Funte, C.M., Borowskr, J., Stosin, K., Brendel, W., Wallis, T.S.A., Bethage, M.: Five points to check when comparing visual perception...
    • 18. Garzón, J., Torres, S., Tudor, C.A.: A strong convergence to the Rosenblatt process. J. Math. Anal. Appl. 391(2), 630–647 (2012). https://doi.org/10.1016/j.jmaa.2012.02.040
    • 19. Gu, Y., Wang, S., Li, Q., Cheng, Z., Qian, J.: On delay-dependent stability and decay estimate for uncertain systems with time-varying...
    • 20. Guerra, J., Nualart, D.: Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Stoch. Anal....
    • 21. Gunerhan, H., Celic, E.: Analytical and approximate solutions of fractional partial differential algebraic equations. Appl. Math. Nonlinear...
    • 22. Holm, D.D., Hu, R.: Stochastic effects of waves on currents in the ocean mixed layers. J. Math. Phys.62, 1–32 (2021)
    • 23. Ilthan, E., Kiymaz, O.: A generalization of truncated M-fractional derivative and applications to fractional differential equations. App....
    • 24. Jiang, Y., Huang, N., Wei, Z.: Existence of a global attractor for fractional differential hemivariational inequalities. Discrete Contin....
    • 25. Jumarie, G.: Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. Appl. Math. Model. 32,...
    • 26. Kent, C., Guest, D., Adelman, J.S., Lamberts, K.: Stochastic accumulation of feature information in perception and memory. Front. Psychol....
    • 27. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, North-Holland...
    • 28. Kondrashov, D., Chekroun, M.D., Berloff, P.: Multiscale Stuart–Landau emulators: application to wind-driven ocean gyres. Fluids 3, 1–32...
    • 29. Kumar, V., Malik, M., Debbouche, A.: Stability and controllability analysis of fractional damped differential system with non-instantaneous...
    • 30. Lakhel, E., McKibben, M.A.: Existence of solutions for fractional neutral functional differential equations driven by fractional Brownian...
    • 31. Liu, L., Caraballo, T.: Well-posedness and dynamics of a fractional stochastic integro-differential equation. Phys. D Nonlinear Phenom....
    • 32. Li, Y., Wang, Y.: The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear...
    • 33. Li, W., Chen, F., Shen, M., Fei, W., Mao, X.: A stabilization analysis for highly nonlinear neutral stochastic delay hybrid systems with...
    • 34. Lu, Z., Zhu, Y., Xu, Q.: Asymptotic stability of fractional neutral stochastic systems with variable delays. Eur. J. Control. 57, 119–124...
    • 35. Mattuvarkuzhali, C., Balasubramaniam, P.: pth moment stability of fractional stochastic differential inclusion via resolvent operators...
    • 36. Mao,W., You, S.,Wu, X., Mao, X.: On the averaging principle for stochastic delay differential equations with jumps. Adv. Differ. Equ....
    • 37. Ouahra, M.A., Boufoussi, B., Lakhel, E.: Existence and stability for stochastic impulsive neutral partial differential equations driven...
    • 38. Podlubny, I.: Fractional Differential Equations. Academic Press, London (1999)
    • 39. Randjelovic, J., Jankovic, S.: On the pth moment exponential stability criteria of neutral stochastic functional differential equations....
    • 40. Shen, G., Sakthivel, R., Ren, Y.: Controllability and stability of fractional stochastic functional systems driven by Rosenblatt process....
    • 41. Sakthivel, R., Revathi, P., Mahumov, N.I.: Asymptotic stability of fractional stochastic neutral differential equations with infinite...
    • 42. Sakthivel, R., Revathi, P., Ren, Y.: Retarded stochastic differential equation with infinite delay driven by Rosenblatt process. Stoch....
    • 43. Sene, N.: Exponential form for Lyapunov function and stability analysis of fractional differential equation. J. Math. Comput. Sci. 18,...
    • 44. Subbaiyan, S., Debbouche, A., Wang, J.: Approximate controllability of Hilfer fractional Sobolev type integrodifferential inclusions with...
    • 45. Tan, L., Lei, D.: The averaging method for stochastic differential delay equations under non-Lipschitz conditions. Adv. Differ. Equ. 2013,...
    • 46. Veeresha, P., Baskons, H.M., Gao, W.: Strong interacting internal waves in rotating ocean: novel fractional approach. Axioms 10, 123 (2021)
    • 47. Vinodkumar, A.: Some results in stochastic functional integro-differential equations with infinite delays. Int. J. Dyn. Syst. Differ....
    • 48. Xu, Y., Duan, J., Xu, W.: An averaging principle for stochastic dynamical systems with Levy noise. Phys. D Nonlinear Phenom. 240, 1395–1401...
    • 49. Xu, W., Zhang, S.: The averaging principle for stochastic differential equations with Caputo fractional derivative. Appl. Math. Lett....
    • 50. Yokus, A., Gulbahar, S.: Numerical solutions with linearization techniques of the fractional Harry Dym equation. Appl. Math. Nonlinear...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno