Ir al contenido

Documat


The Application of Liénard Transformations to Predator–Prey Systems

  • Yuan Liu [1] ; André Zegeling [1] ; Wentao Huang [1]
    1. [1] Guangxi Normal University

      Guangxi Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 2, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper discusses the different ways a planar autonomous predator–prey system can be transformed to a Liénard system. The procedure is applied to several families like Gause and Leslie–Gower systems with functional response functions of different types ranging from simple prey-dependent functions to a Beddington–DeAngelis function, Hassell–Varley function, Crowley–Martin function, all of which depend in a nonlinear way on the predator or prey density.To illustrate the methodology we prove for three specific predator–prey systems -two Gause systems and one Leslie–Gower system— that at most one limit cycle exists using Liénard theorems. In two cases adjustments of the classical Zhang Zhifen theorem are applied, while the third case is solved by using a more powerful theorem, which is a generalization of Coppel’s theorem.

  • Referencias bibliográficas
    • 1. Albarakati, W.A., et al.: Transformation to Liénard form. Elec. J. Differ. Equ. 2000(76), 1–11 (2000)
    • 2. Arnol’d, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations, 1973, 351 pages
    • 3. Artés, A.C., et al.: Geometric configurations of singularities of planar plynomial differential systems, Birkhäuser, 2021, 111–123
    • 4. Beddington, J.R.: Mutual interference between parasites of predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–341...
    • 5. Cheng, K.: Uniqueness of a limit cycle for a predator-prey system. SIAM J. Math. Ana. 12, 541–548 (2012)
    • 6. Cherkas, L.A.: Conditions for the center for certain equations of the form yy’=P(x)+Q(x)y+R(x)y2 (in Russian), Differential...
    • 7. Cherkas, L.A.: Conditions for a center for a certain Liénard equation (in Russian), Differential Equations, Vol. 12(2), 1976, 292–298,...
    • 8. Coppel, W.A.: Some quadratic systems with at most one limit cycle. Dyn. Rep. 2, 61–68 (1988)
    • 9. Christopher, C.J.: An algebraic approach to the classification of centres in polynomial Liénard systems. J. Math. Anal. Appl. 229, 319–329...
    • 10. Christopher, C.J., Schlomiuk, D.: On general algebraic mechanisms for producing centers in polynomial differential systems. J. Fixed Point...
    • 11. DeAngelis, D.L., Goldstein, R.A., Neill, R.V.: A model for trophic interaction. Ecology 56, 881–892 (1975)
    • 12. Dumortier, F., Rousseau, C.: Cubic Lienard equations with linear damping. Nonlinearity 3, 1015–1039 (1990)
    • 13. Fan, K., et al.: Qualitative and bifurcation analysis in a Leslie-Gower model with Allee efect. Qual. Theory Dyn. Syst. 21(86), 1–19 (2022)
    • 14. Gasull, A.: Differential Equations that can be transformed into equations of Liénard type, Actas del XVLL colloquio Brasileiro de matematica,...
    • 15. Giné, J., Llibre, J.: Weierstrass integrability in Liénard differential systems. J. Math. Anal. Appl. 377, 362–369 (2011)
    • 16. Giné, J.: Center conditions for polynomial Liénard systems. Qual. Theory Dyn. Syst. 16(1), 119–126 (2017)
    • 17. Hsu, S.B., Hubbell, S.P., Waltman, P.: Competing predators. SIAM J. Appl. Math. 35, 617–625 (1978)
    • 18. Jost, C.: Comparing predator-prey models qualitatively and quantitatively with ecological time-series data, PhD thesis Institut national...
    • 19. Jost, C., Ellner, S.: Testing for predator dependence in predator-prey dynamics: a non-parametric approach. Proc. R. Soc. B 267, 1611–1620...
    • 20. Kooij, R.E.: Limit cycles in polynomial systems, Thesis (Dr.)Technische Universiteit Delft (The Netherlands), 1993, 159 pp
    • 21. Kooij, R.E., Zegeling, A.: A predator-prey model with Ivlev’s functional response. J. Math. Anal. Appl. 198, 473–489 (1996)
    • 22. Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrika 35(3–4), 213–245 (1948)
    • 23. Leslie, P.H.: A stochastic model for studying the properties of certain biological systems by numerical methods. Biometrika 45(1–2), 16–31...
    • 24. Liu, J.: Transformations and their applications in planar quadratic systems. J. Wuhan Iron Steel Inst. 4, 10–15 (1979)
    • 25. Moreira, H.N.: On Liénard’s equation and the uniqueness of limit cycles in predator-prey systems. J. Math. Biol. 28(3), 341–354 (1990)
    • 26. Saha, T., Pal, P.J., Banerjee, M.: Oscillation and canard explosion in a slow-fast predator-prey model with Beddington-DeAngelis functional...
    • 27. Wang, X., Li, S.: Dynamics in a slow-fast Leslie-Gower predator-prey model with BeddingtonDeAngelis functional response, 2022, 1–26. https://doi.org/10.21203/rs.3.rs-1759998/v1
    • 28. Ye, Y., et al.: Theory of Limit Cycles, 1984, 435 pages
    • 29. Zegeling, A., Kooij, R.E.: Uniqueness of limit cycles in polynomial systems with algebraic invariants. Bull. Aust. Math. Soc. 49, 7–20...
    • 30. Zeng, X., Zhang, Z., Gao, S.: On the uniqueness of the limit cycle of the generalized Liénard equation. Bull. Lond. Math. Soc. 26, 213–247...
    • 31. Zhang, P.: On the distribution and number of limit cycles for quadratic systems with two foci. Qual. Theory Dyn. Syst. 3(47), 437–463...
    • 32. Zhang, Z., et al.: Qualitative theory of differential equations, American Math. Soc., 1992, 461 pages
    • 33. Zhang, Z.: Dokl. Akad. Nauk SSSR 119, 659–662 (1958)
    • 34. Zhang, Z.: Proof of the uniqueness theorem of limit cycles of generalized Liénard equations. Appl. Anal. 23, 63–76 (1986)
    • 35. Zhou, Y., Wang, C., Blackmore, D.: The uniqueness of limit cycles for Liénard system. J. Math. Anal. Appl. 304(2), 473–489 (2005)
    • 36. Zimmerman, B., et al.: Predator-dependent functional response in wolves: from food limitation to surplus killing. J. Anim. Ecol. 84, 102–112...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno