Ir al contenido

Documat


Homotopy theory of monoid actions via group actions and an Elmendorf style theorem

  • Erdal, Mehmet Akif [1]
    1. [1] Yeditepe University

      Yeditepe University

      Turquía

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 75, Fasc. 1, 2024, págs. 331-359
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00388-z
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let M be a monoid and G:\mathbf {Mon} \rightarrow \mathbf {Grp} be the group completion functor from monoids to groups. Given a collection \mathcal {X} of submonoids of M and for each N\in \mathcal {X} a collection \mathcal {Y}_N of subgroups of G(N), we construct a model structure on the category of M-spaces and M-equivariant maps, called the (\mathcal {X},\mathcal {Y})-model structure, in which weak equivalences and fibrations are induced from the standard \mathcal {Y}_N-model structures on G(N)-spaces for all N\in \mathcal {X}. We also show that for a pair of collections (\mathcal {X},\mathcal {Y}) there is a small category {{\mathbf {O}}}_{(\mathcal {X},\mathcal {Y})} whose objects are M-spaces M\times _NG(N)/H for each N\in \mathcal {X} and H\in \mathcal {Y}_N and morphisms are M-equivariant maps, such that the (\mathcal {X},\mathcal {Y})-model structure on the category of M-spaces is Quillen equivalent to the projective model structure on the category of contravariant {{\mathbf {O}}}_{(\mathcal {X},\mathcal {Y})}-diagrams of spaces.

  • Referencias bibliográficas
    • Elmendorf, A.D.: Systems of fixed point sets. Trans. Am. Math. Soc. 277(1), 275–284 (1983)
    • Malcev, A.I.: On the immersion of associative systems in groups. Mat. Sb. 6(48), 331–336 (1939)
    • Erdal, M.A., Ünlü, Ö.: Semigroup actions on sets and the Burnside ring. Appl. Categ. Struct. (2016)
    • Strickland, N.P.: The Category of CGWH Spaces. Preprint (2009)
    • Hirschhorn, P.S.: The Quillen model category of topological spaces. Expo. Math. 37(1), 2–24 (2019)
    • Quillen, D.G.: Homotopical Algebra. Lecture Notes in Mathematics, No. 43, p. 156. Springer, Berlin (1967)
    • Dwyer, W.G., Spaliński, J.: Homotopy theories and model categories. In: Handbook of Algebraic Topology, pp. 73–126. North-Holland, Amsterdam...
    • Hovey, M.: Model Categories. Mathematical Surveys and Monographs, vol. 63, p. 209. American Mathematical Society, Providence (1999)
    • Hirschhorn, P.S.: Model Categories and Their Localizations. Mathematical Surveys and Monographs, vol. 99, p. 457. American Mathematical Society,...
    • May, J.P., Ponto, K.: More Concise Algebraic Topology: Localization, Completion, and Model Categories. University of Chicago Press, Chicago...
    • Hess, K., Kȩdziorek, M., Riehl, E., Shipley, B.: A necessary and sufficient condition for induced model structures. J. Topol. 10(2), 324–369...
    • Berger, C., Moerdijk, I.: Axiomatic homotopy theory for operads. Comment. Math. Helv. 78(4), 805–831 (2003)
    • Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. London Mathematical Society Lecture Note Series, vol. 189, p. 316....
    • Hill, M.A., Hopkins, M.J., Ravenel, D.C.: On the nonexistence of elements of Kervaire invariant one. Ann. Math. 184, 1–262 (2016)
    • Nikolaus, T., Scholze, P.: On topological cyclic homology. Acta Math. 221(2), 203–409 (2018)
    • Dotto, E., Moi, K., Patchkoria, I., Reeh, S.P.: Real topological Hochschild homology. J. Eur. Math. Soc. 23(1), 63–152 (2020)
    • Huerta, J., Sati, H., Schreiber, U.: Real ade-equivariant (co) homotopy and super m-branes. Commun. Math. Phys. 371(2), 425–524 (2019)
    • Sati, H., Schreiber, U.: Equivariant cohomotopy implies orientifold tadpole cancellation. J. Geom. Phys. 156, 103775 (2020)
    • Piacenza, R.J.: Homotopy theory of diagrams and CW-complexes over a category. Canad. J. Math. 43(4), 814–824 (1991)
    • May, J.P.: Equivariant Homotopy and Cohomology Theory. CBMS Regional Conference Series in Mathematics, vol. 91, p. 366. Published for the...
    • Stephan, M.: On equivariant homotopy theory for model categories. Homol. Homotopy Appl. 18(2), 183–208 (2016)
    • Guillou, B., May, J.P., Rubin, J.: Enriched model categories in equivariant contexts. Homol. Homotopy Appl. 12(2), 1–35 (2010)
    • Erdal, M.A., Güçlükan-İlhan, A.: A model structure via orbit spaces for equivariant homotopy. J. Homotopy Relat. Struct. 14(4), 1131–1141...
    • Lurie, J.: Higher Topos Theory. Annals of Mathematics Studies, vol. 170, p. 925. Princeton, Princeton University Press (2009).
    • Fausk, H.: Equivariant homotopy theory for pro-spectra. Geom. Topol. 12(1), 103–176 (2008)
    • Mandell, M.A., May, J.P.: Equivariant orthogonal spectra and S-modules. Mem. Am. Math. Soc. 159(755), 108 (2002).
    • Schwede, S.: Global Homotopy Theory. New Mathematical Monographs, Cambridge University Press, Cambridge (2018)
    • Riehl, E.: Categorical Homotopy Theory, vol. 24. Cambridge University Press, Cambridge (2014)
    • Shulman, M.: Homotopy limits and colimits and enriched homotopy theory (2006)
    • Moerdijk, I., Svensson, J.-A.: The equivariant Serre spectral sequence. Proc. Am. Math. Soc. 118(1), 263–278 (1993)
    • Thomason, R.W.: Cat as a closed model category. Cah. Topol. Geom. Differ. Categ. 21(3), 305–324 (1980)
    • Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium, vol. 2. Oxford University Press, Oxford (2002)
    • Goerss, P.G., Jardine, J.F.: Simplicial Homotopy Theory. Springer, Basel (2009)
    • Souza, J.A., Tozatti, H.V.: Chaos, attraction, and control for semigroup actions. In: Semigroup Forum, vol. 101, no. 1, pp. 202–225. Springer...
    • Mittenhuber, D.: Semigroup actions on homogeneous spaces: control sets and stabilizer subgroups. In: Proceedings of 1995 34th IEEE Conference...
    • Sain, M., Massey, J.: Invertibility of linear time-invariant dynamical systems. IEEE Trans. Autom. Control 14(2), 141–149 (1969)
    • Milnor, J.: On the concept of attractor. In: The Theory of Chaotic Attractors, pp. 243–264. Springer, New York (1985)
    • Souza, J.A.: On the existence of global attractors in principal bundles. Dyn. Syst. 32(3), 410–422 (2017)
    • Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In: International Symposium on Mathematical Foundations of Computer...
    • Hooper, P.K.: The undecidability of the Turing machine immortality problem 1. J. Symbol. Logic 31(2), 219–234 (1966)
    • Lamb, J.S., Roberts, J.A.: Time-reversal symmetry in dynamical systems: a survey. Physica D 112(1–2), 1–39 (1998)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno