Ir al contenido

Documat


Homotopy theory of monoid actions via group actions and an Elmendorf style theorem

  • Erdal, Mehmet Akif [1]
    1. [1] Yeditepe University

      Yeditepe University

      Turquía

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 75, Fasc. 1, 2024, págs. 331-359
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00388-z
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let M be a monoid and G:\mathbf {Mon} \rightarrow \mathbf {Grp} be the group completion functor from monoids to groups. Given a collection \mathcal {X} of submonoids of M and for each N\in \mathcal {X} a collection \mathcal {Y}_N of subgroups of G(N), we construct a model structure on the category of M-spaces and M-equivariant maps, called the (\mathcal {X},\mathcal {Y})-model structure, in which weak equivalences and fibrations are induced from the standard \mathcal {Y}_N-model structures on G(N)-spaces for all N\in \mathcal {X}. We also show that for a pair of collections (\mathcal {X},\mathcal {Y}) there is a small category {{\mathbf {O}}}_{(\mathcal {X},\mathcal {Y})} whose objects are M-spaces M\times _NG(N)/H for each N\in \mathcal {X} and H\in \mathcal {Y}_N and morphisms are M-equivariant maps, such that the (\mathcal {X},\mathcal {Y})-model structure on the category of M-spaces is Quillen equivalent to the projective model structure on the category of contravariant {{\mathbf {O}}}_{(\mathcal {X},\mathcal {Y})}-diagrams of spaces.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno