Ir al contenido

Documat


Hardy spaces associated to self-adjoint operators on general domains

  • Duong, Xuan Thinh [1] ; Li, Ji [1] ; Lee, Ming-Yi [2] ; Lin, Chin-Cheng [2]
    1. [1] Macquarie University

      Macquarie University

      Australia

    2. [2] Department of Mathematics, National Central University, Chung-Li, 320, Taiwan, Republic of China
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 75, Fasc. 1, 2024, págs. 305-330
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00387-0
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let (X,d,\mu ) be the space of homogeneous type and \Omega be a measurable subset of X which may not satisfy the doubling condition. Let L denote a nonnegative self-adjoint operator on L^2(\Omega ) which has a Gaussian upper bound on its heat kernel. The aim of this paper is to introduce a Hardy space H^1_L(\Omega ) associated to L on \Omega which provides an appropriate setting to obtain H^1_L(\Omega )\rightarrow L^1(\Omega ) boundedness for certain singular integrals with rough kernels. This then implies L^p boundedness for the rough singular integrals, 1 p \le 2 , from interpolation between the spaces L^2(\Omega ) and H^1_L(\Omega ). As applications, we show the boundedness for the holomorphic functional calculus and spectral multipliers of the operator L from H^1_L(\Omega ) to L^1(\Omega ) and on L^p(\Omega ) for 1< p < \infty. We also study the case of the domains with finite measure and the case of the Gaussian upper bound on the semigroup replaced by the weaker assumption of the Davies–Gaffney estimate.

  • Referencias bibliográficas
    • Bui, T. A., Duong, X. T., Ly, F. K.: Maximal function characterizations for Hardy spaces on spaces of homogeneous type with finite measure...
    • Chang, S.-Y.A., Fefferman, R.: The Calderón-Zygmund decomposition on product domains. Amer. J. Math. 104, 445–468 (1982)
    • Chen, P., Duong, X., Li, J., Ward, L., Yan, L.: Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous...
    • Christ, M.: A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60(61), 601–628 (1990)
    • Chang, D.-C., Krantz, S.G., Stein, E.M.: H^p theory on a smooth domain in {\mathbb{R} }^n and elliptic boundary value problems. J. Funct....
    • Coulhon, T., Sikora, A.: Gaussian heat kernel upper bounds via Phragmén-Lindelöf theorem. Proc. Lond. Math. 96, 507–544 (2008)
    • Coifman, R. R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homogènes. Étude de certaines intégrales singulières, Lecture...
    • Davies, E.B.: Heat kernels and spectral theory. Cambridge Univ. Press, Cambridge (1989)
    • Duong, X.T., Hofmann, S., Mitrea, D., Mitrea, M., Yan, L.X.: Hardy spaces and regularity for the inhomogeneous Dirichlet and Neumann problems....
    • Duong, X.T., McIntosh, A.: Singular integral operators with non-smooth kernels on irregular domains. Rev. Mat. Iberoam. 15, 233–265 (1999)
    • Duong, X.T., Sikora, A., Yan, L.: Weighted norm inequalities, Gaussian bounds and sharp spectral multipliers. J. Func. Anal. 260, 1106–1131...
    • Duong, X.T., Li, J.: Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus....
    • Duong, X.T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Amer. Math. Soc. 18, 943–973 (2005)
    • Duong, X.T., Yan, L.: Spectral multipliers for Hardy spaces associated to nonnegative self-adjoint operators satisfying Davies-Gaffney estimates....
    • Dziubański, J., Zienkiewicz, J.: The Hardy space H^1 for Schrödinger operator with certain potentials. Studia Math. 164, 39–53 (2004)
    • Gaffney, M.P.: The conservation property of the heat equation on Riemannian manifolds. Comm. Pure Appl. Math. 12, 1–11 (1959)
    • Hytönen, T., Kairema, A.: Systems of dyadic cubes in a doubling metric space. Colloq. Math. 126, 1–33 (2012)
    • Hofmann, S., Lu, G.Z., Mitrea, D., Mitrea, M., Yan, L.X.: Hardy spaces associated to nonnegative self-adjoint operators satisfying Davies-Gaffney...
    • Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344, 37–116 (2009)
    • Hytönen, T., Yang, D., Yang, D.: The Hardy space H^1 on non-homogeneous metric spaces. Math. Proc. Cambridge Philos. Soc. 153, 9–31 (2012)
    • Jiang, R., Yang, D.: New Orlicz-Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal. 258, 1167–1224 (2010)
    • Jonsson, A., Sjögren, P., Wallin, H.: Hardy and Lipschitz spaces on subsets of {\mathbb{R} }^n. Studia Math. 80, 141–166 (1984)
    • Lin, C.-C., Stempak, K.: Atomic H^p spaces and their duals on open subsets of {\mathbb{R} }^d. Forum Math. 27, 2129–2156 (2015)
    • Mauceri, G., Meda, S.: BMO and H^1 for the Ornstein-Uhlenbeck operator. J. Funct. Anal. 252, 278–313 (2007)
    • McIntosh, A.: Operators which have an H_\infty functional calculus, Miniconference on operator theory and partial differential equations (North...
    • Miyachi, A.: H^p spaces over open subsets of {\mathbb{R} }^n. Studia Math. 95, 205–228 (1990)
    • Ouhabaz, E.M.: Analysis of heat equations on domains. London Math. Soc. Monographs. Princeton Univ Press, Princeton (2004)
    • Russ, E.: The atomic decomposition for tent spaces on spaces of homogeneous type, Asymptotic Geometric Analysis, Harmonic Analysis, and Related...
    • Simon, B.: Maximal and minimal Schd̈ringer forms. J. Operator Theory 1, 37–47 (1979)
    • Sikora, A.: Riesz transform, Gaussian bounds and the method of wave equation. Math. Z. 247, 643–662 (2004)
    • Sawyer, E., Wheeden, R.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Amer. J. Math 114, 813–874 (1992)
    • Song, L., Yan, L.: A maximal function characterization for Hardy spaces associated to nonnegative self-adjoint operators satisfying Gaussian...
    • Song, L., Yan, L.: Maximal function characterizations for Hardy spaces associated with nonnegative self-adjoint operators on spaces of homogeneous...
    • Tolsa, X.: BMO, H^1, and Calderón-Zygmund operators for non doubling measures. Math. Ann. 319, 89–149 (2001)
    • Tolsa, X.: The space H^1 for nondoubling measures in terms of a grand maximal operator. Trans. Amer. Math. Soc. 355, 315–348 (2003)
    • Yang, D., Yang, D., Fu, X.: The Hardy space H^1 on non-homogeneous spaces and its applications survey. Eurasian Math. J. 4, 104–139 (2013)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno