Ir al contenido

Documat


Multi-Rees algebras of strongly stable ideals

  • Kara, Selvi [1] ; Lin, Kuei-Nuan [3] ; Sosa Castillo, Gabriel [2]
    1. [1] University of Utah

      University of Utah

      Estados Unidos

    2. [2] Colgate University

      Colgate University

      Town of Hamilton, Estados Unidos

    3. [3] Department of Mathematics, Penn State University, Greater Allegheny campus 4000 University Dr, McKeesport, PA, 15132, USA
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 75, Fasc. 1, 2024, págs. 213-246
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00385-2
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove that the multi-Rees algebra {\mathcal {R}}(I_1 \oplus \cdots \oplus I_r) of a collection of strongly stable ideals I_1, \ldots , I_r is of fiber type. In particular, we provide a Gröbner basis for its defining ideal as a union of a Gröbner basis for its special fiber and binomial syzygies. We also study the Koszulness of {\mathcal {R}}(I_1 \oplus \cdots \oplus I_r) based on parameters associated to the collection. Furthermore, we establish a quadratic Gröbner basis of the defining ideal of {\mathcal {R}}(I_1 \oplus I_2) where each of the strongly stable ideals has two quadric Borel generators. As a consequence, we conclude that this multi-Rees algebra is Koszul.

  • Referencias bibliográficas
    • Bayer, D., Stillman, M.: A theorem on refining division orders by the reverse lexicographical order. Duke Math. J. 55, 321–328 (1987)
    • Blasiak, J.: The toric ideal of a graphic matroid is generated by quadrics. Combinatorica 28(3), 283–297 (2008)
    • Blum, S.: Subalgebras of bigraded Koszul algebras. J. Algebra 242, 795–808 (2001)
    • Bruns, W., Conca, A.: Linear resolutions of powers and products. In: Singularities and Computer Algebra, pp. 47–69. Springer, Cham (2017)
    • Chen, F., Wang, W., Liu, Y.: Computing singular points of plane rational curves. J. Symb. Comput. 43, 92–117 (2008)
    • Conca, A.: Symmetric ladders. Nagoya Math. J. 136, 35–36 (1994)
    • Conca, A., De Negri, E., Rossi, M.: Koszul algebras and regularity. In: Commutative Algebra, pp. 285–315. Springer, New York (2013)
    • Cox, D.: Applications of polynomial systems. In: CBMS Regional Conference Series in Mathematics, vol. 134. American Mathematical Society (2020)
    • Cox, D., Lin, K.-N., Sosa, G.: Multi-Rees algebras and toric dynamical systems. Proc. Am. Math. Soc. 147(11), 4605–4616 (2019)
    • De Negri, E.: Toric rings generated by special stable sets of monomials. Math. Nachr. 203(1), 31–45 (1999)
    • DiPasquale, M., Francisco, C., Mermin, J., Schweig, J., Sosa, G.: The Rees algebra of a two-Borel ideal is Koszul. Proc. Am. Math. Soc. 147(2),...
    • DiPasquale, M., Jabbar Nezhad, B.: Koszul multi-Rees algebras of principal L-Borel ideals. J. Algebra 581, 353–385 (2021)
    • Ene, V., Herzog, J.: Gröbner Bases in Commutative Algebra. American Mathematical Society, Providence (2011)
    • Fröberg, R.: Koszul algebras. In: Advances in Commutative Ring Theory, Lecture Notes in Pure and Applied Math, vol. 205, pp. 337–350. Dekker,...
    • Galligo, A.: À propos du théorème de-préparation de Weierstrass. In: Fonctions de Plusieurs Variables Complexes, Lecture Notes in Math, vol....
    • Grayson, Daniel R., Stillman, Michael E.: Macaulay2, a Software System for Research in Algebraic Geometry. Available at http://www.math.uiuc.edu/Macaulay2/
    • Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics. Springer-Verlag, London (2011)
    • Herzog, J., Hibi, T., Vladoiu, M.: Ideals of fiber type and polymatroids. Osaka J. Math. 42(4), 807–829 (2005)
    • Jabarnejad, B.: Equations defining the multi-Rees algebras of powers of an ideal. J. Pure Appl. Algebra 222, 1906–1910 (2018)
    • Lin, K.-N., Polini, C.: Rees algebras of truncations of complete intersections. J. Algebra 410(9), 36–52 (2014)
    • Schweig, J.: Toric ideals of lattice path matroids and polymatroids. J. Pure Appl. Algebra 215(11), 2660–2665 (2011)
    • Sosa, G.: On the Koszulness of Multi-Rees Algebras of Certain Strongly Stable Ideals. arXiv preprint arXiv:1406.2188, (2014)
    • Sturmfels, B.: Gröbner bases and convex polytopes. University Lecture Series. American Mathematical Society, Providence (1996)
    • Vasconcelos, W.: Arithmetic of Blowup Algebras, London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1994)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno