Ir al contenido

Documat


Spacelike mean curvature flow solitons, polynomial volume growth and stochastic completeness of spacelike hypersurfaces immersed into pp-vave spacetimes

  • Velásquez, Marco A. L. [1] ; de Lima, Henrique F. [1] ; de Lacerda, José H. H. [1]
    1. [1] Universidade Federal de Campina Grande

      Universidade Federal de Campina Grande

      Brasil

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 75, Fasc. 1, 2024, págs. 189-211
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00384-3
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Our purpose in this paper is to study some geometric properties of spacelike hypersurfaces immersed into a pp-wave spacetime, namely, a connected Lorentzian manifold admitting a parallel lightlike vector field. Initially, by applying a new form of maximum principle for smooth functions on a complete noncompact Riemannian manifold, we obtain sufficient conditions which guarantee that a complete noncompact spacelike hypersurface with polynomial volume growth is either totally geodesic, maximal or 1-maximal. As a consequence, we establish nonexistence results concerning such spacelike hypersurfaces. Next, using a weak form of the Omori–Yau maximum principle, we get uniqueness and nonexistence results for stochastically complete spacelike hypersurface with constant mean curvature. Finally, we establish the notion of spacelike mean curvature flow soliton in pp-wave spacetimes and we provide some geometric conditions that allow us to guarantee how close a complete spacelike mean curvature flow soliton is to a totally geodesic immersion.

  • Referencias bibliográficas
    • Aarons, M.: Mean curvature flow with a forcing term in Minkowski space. Calc. Var. PDE 25, 205–246 (2005)
    • Albujer, A.L., Camargo, F., de Lima, H.F.: Complete spacelike hypersurfaces in a Robertson–Walker spacetime. Math. Proc. Camb. Philos. Soc....
    • Alías, L.J., Caminha, A., do Nascimento, F.Y.: A maximum principle related to volume growth and applications. Ann. Mat. Pura Appl. 200, 1637–1650...
    • Alías, L.J., de Lira, J.H., Rigoli, M.: Mean curvature flow solitons in the presence of conformal vector fields. J. Geom. Anal. 30, 1466–1529...
    • Alías, L.J., Romero, A., Sánchez, M.: Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker...
    • Angenent, S.: On the formation of singularities in the shortening flow. J. Differ. Geom. 33, 601–633 (1991)
    • Bernstein, S.: Sur un théorème de géométrie et ses applications aux équations aux dérivées partielles du type elliptique. Commun. Soc. Math....
    • Brinkmann, H.: Einstein spaces which are mapped conformally on each other. Math. Ann. 18, 119–145 (1925)
    • Calabi, E.: Examples of Bernstein problems for some nonlinear equations. In: Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley,...
    • Caballero, M., Romero, A., Rubio, R.M.: Uniqueness of maximal surfaces in generalized Robertson–Walker spacetimes and Calabi–Bernstein type...
    • Caballero, M., Romero, A., Rubio, R.M.: Complete cmc spacelike surfaces with bounded hyperbolic angle in generalized Robertson–Walker spacetimes....
    • Chen, Q., Qiu, H.: Rigidity of self-shrinkers and translating solitons of mean curvature flows. Adv. Math. 294, 517–531 (2016)
    • Cheng, S.Y., Yau, S.T.: Maximal space-like hypersurfaces in the Lorentz–Minkowski spaces. Ann. Math. 104, 407–419 (1976)
    • Colombo, G., Mari, L., Rigoli, M.: Remarks on mean curvature flow solitons in warped products. Disc. Cont. Dyn. Syst. 13, 1957–1991 (2020)
    • de Lima, H.F., Parente, U.: On the geometry of maximal spacelike hypersurfaces immersed in a generalized Robertson–Walker spacetime. Ann....
    • de Lima, H.F., Velásquez, M.A.L.: On the totally geodesic spacelike hypersurfaces in conformally stationary spacetimes. Osaka J. Math. 51,...
    • de Lima, H.F., Velásquez, M.A.L.: Uniqueness of complete spacelike hypersurfaces via their higher order mean curvatures in a conformally stationary...
    • de Lira, J.H., Martín, F.: Translating solitons in Riemannian products. J. Differ. Equ. 266, 7780–7812 (2019)
    • Ecker, K.: On mean curvature flow of spacelike hypersurfaces in asymptotically flat spacetime. J. Austral. Math. Soc. Ser. A 55, 41–59 (1993)
    • Ecker, K.: Interior estimates and longtime solutions for mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space. J....
    • Ecker, K.: Mean curvature flow of spacelike hypersurfaces near null initial data. Commun. Anal. Geom. 11, 181–205 (2003)
    • Ecker, K., Huisken, G.: Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes....
    • Einstein, A., Rosen, N.: On gravitational waves. J. Franklin Inst. 223, 43–54 (1937)
    • Émery, M.: Stochastic Calculus on Manifolds. Springer, Berlin (1989)
    • Gao, S., Li, G., Wu, C.: Translating spacelike graphs by mean curvature flow with prescribed contact angle. Arch. Math. 103, 499–508 (2014)
    • Gerhardt, C.: Hypersurfaces of prescribed mean curvature in Lorentzian manifolds. Math. Z. 235, 83–97 (2000)
    • Grigor’yan, A.: Stochastically complete manifolds and summable harmonic functions, Izv. Akad. Nauk SSSR Ser. Mat. 52,: 1102–1108; translation...
    • Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am....
    • Hamilton, R.S.: Harnack estimate for the mean curvature flow. J. Differ. Geom. 41, 215–226 (1995)
    • Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20, 237–266 (1984)
    • Huisken, G., Yau, S.T.: Definition of center of mass for isolated physical system and unique foliations by stable spheres with constant curvature....
    • Hungerbühler, N., Mettler, T.: Soliton solutions of the mean curvature flow and minimal hypersurfaces. Proc. Am. Math. Soc. 140, 2117–2126...
    • Hungerbühler, N., Roost, B.: Mean curvature flow solitons, Analytic aspects of problems in Riemannian geometry: elliptic PDEs, solitons and...
    • Hungerbühler, N., Smoczyk, K.: Soliton solutions for the mean curvature flow. Differ. Integral Equ. 13, 1321–1345 (2000)
    • Jian, H.: Translating solitons of mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space. J. Differ. Equ. 220, 147–162...
    • Lambert, B.: A note on the oblique derivative problem for graphical mean curvature flow in Minkowski space. Abh. Math. Semin. Univ. Hambg....
    • Lambert, B.: The perpendicular Neumann problem for mean curvature flow with a timelike cone boundary condition. Trans. Am. Math. Soc. 366,...
    • Li, G., Salavessa, I.: Mean curvature flow of spacelike graphs. Math. Z. 269, 697–719 (2011)
    • Marsden, J., Tipler, F.: Maximal hypersurfaces and foliations of constant mean curvature in general relativity. Phys. Rep. 66, 109–139 (1980)
    • O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, London (1983)
    • Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Jpn. 19, 205–214 (1967)
    • Pelegrín, J., Romero, A., Rubio, R.: On maximal hypersurfaces in Lorentz manifolds admitting a parallel lightlike vector field. Class. Q....
    • Pigola, S., Rigoli, M., Setti, A.G.: A remark on the maximum principle and stochastic completeness. Proc. Am. Math. Soc. 131, 1283–1288 (2003)
    • Pigola, S., Rigoli, M., Setti, A.G.: Maximum principles on Riemannian manifolds and applications, Mem. Am. Math. Soc. 174(822), x+99pp...
    • Romero, A.: Constant mean curvature spacelike hypersurfaces in spacetimes with certain causal symmetries, 20th IWHSS, Daegu Korea,: Springer...
    • Romero, A., Rubio, R.M.: On the mean curvature of spacelike surfaces in certain three-dimensional Robertson–Walker spacetimes and Calabi–Bernstein’s...
    • Romero, A., Rubio, R.M., Salamanca, J.J.: Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson–Walker...
    • Sachs, R.K., Wu, H.: General Relativity for Mathematicians, Graduate Texts in Mathematics 48. Springer, New York (1977)
    • Smoczyk, K.: A Relation between mean curvature flow solitons and minimal submanifolds. Math. Nachr. 229, 175–186 (2001)
    • Spruck, J., Xiao, L.: Entire downward translating solitons of the mean curvature flow in Minkowski space. Proc. Am. Math. Soc. 144, 3517–3526...
    • Stephani, H., Kramer, D., MacCallum, M., Hoenselaersand, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University...
    • Stroock, D.: An Introduction to the Analysis of Paths on a Riemannian Manifold, Math. Surveys and Monographs, volume 4, American Mathematical...
    • Stumbles, S.: Hypersurfaces of constant mean curvature. Ann. Phys. 133, 28–56 (1981)
    • Velásquez, M.A.L., de Lima, H.F.: Complete spacelike hypersurfaces immersed in pp-wave spacetimes. Gen. Relativ. Gravit. 52, 41 (2020)
    • Xu, R., Liu, T.: Rigidity of complete spacelike translating solitons in pseudo-Euclidean space. J. Math. Anal. Appl. 477, 692–707 (2019)
    • Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975)
    • Yau, S.T.: Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno