Ir al contenido

Documat


Disjoint strong transitivity of composition operators

  • Karim, Noureddine [1] ; Benchiheb, Otmane [1] ; Amouch, Mohamed [1]
    1. [1] Department of Mathematics, Faculty of science, Chouaib Doukkali University, El Jadida, Morocco
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 75, Fasc. 1, 2024, págs. 171-187
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00383-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A Furstenberg family \mathcal {F} is a collection of infinite subsets of the set of positive integers such that if A\subset B and A\in \mathcal {F}, then B\in \mathcal {F}. For a Furstenberg family \mathcal {F}, finitely many operators T_1,...,T_N acting on a common topological vector space X are said to be disjoint \mathcal {F}-transitive if for every non-empty open subsets U_0,...,U_N of X the set \{n\in \mathbb {N}:\ U_0 \cap T_1^{-n}(U_1)\cap ...\cap T_N^{-n}(U_N)\ne \emptyset \} belongs to \mathcal {F}. In this paper, depending on the topological properties of \Omega, we characterize the disjoint \mathcal {F}-transitivity of N\ge 2 composition operators C_{\phi _1},\ldots ,C_{\phi _N} acting on the space H(\Omega ) of holomorphic maps on a domain \Omega \subset \mathbb {C} by establishing a necessary and sufficient condition in terms of their symbols \phi _1,...,\phi _N.

  • Referencias bibliográficas
    • Amouch, M., Benchiheb, O.: On cyclic sets of operators. Rendiconti del Circolo Matematico di Palermo Series 2 68(3), 521–529 (2019)
    • Amouch, M., Benchiheb, O.: On linear dynamics of sets of operators. Turk. J. Math. 43(1), 402–411 (2019)
    • Amouch, M., Benchiheb, O.: Diskcyclicity of sets of operators and applications. Acta Math. Sin. Engl. Ser. 36, 1203–1220 (2020)
    • Amouch, M., Benchiheb, O.: Some versions of supercyclicity for a set of operators. Filomat 35(5), 1619–1627 (2021)
    • Amouch, M., Karim, N.: Strong transitivity of composition operators. Acta Math. Hungar. 164, 458–469 (2021)
    • Bayart, F., Matheron, É.: Hypercyclic operators failing the hypercyclicity criterion on classical Banach spaces. J. Funct. Anal. 250(2), 426–441...
    • Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge University Press, New York (2009)
    • Bayart, F., Darji, U.B., Peris, B.: Topological transitivity and mixing of composition operators. J. Math. Anal. Appl. 465(1), 125–139 (2018)
    • Bernal-González, L., Montes-Rodríguez, A.: Universal functions for composition operators. Complex Var. Elliptic Equ. 27(1), 47–56 (1995)
    • Bernal-González, L., Grosse-Erdmann, K.G.: The hypercyclicity criterion for sequences of operators. Stud. Math. 157, 17–32 (2003)
    • Bernal-González, L.: Disjoint hypercyclic operators. Stud. Math. 182, 113–131 (2007)
    • Bès, J., Peris, A.: Disjointness in hypercyclicity. J. Math. Anal. Appl. 336(1), 297–315 (2007)
    • Bès, J., Martin, Ö., Peris, A.: Disjoint hypercyclic linear fractional composition operators. J. Math. Anal. Appl. 381(2), 843–856 (2011)
    • Bès, J., Martin, Ö.: Compositional disjoint hypercyclicity equals disjoint supercyclicity. Houst. J. Math. 38(4), 1149–1163 (2012)
    • Bès, J.: Dynamics of composition operators with holomorphic symbol. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales,...
    • Bès, J.: Dynamics of weighted composition operators. Complex Anal. Oper. Theory 8(1), 159–176 (2014)
    • Bès, J., Menet, Q., Peris, A., Puig, Y.: Strong transitivity properties for operators. J. Differ. Equ. 266(2–3), 1313–1337 (2019)
    • Birkhoff, G.D.: Démonstration d’un théorème élémentaire sur les fonctions entières. CR Acad Sci. Paris Ser. I Math. 189, 473–475 (1929)
    • De La Rosa, M., Read, C.: A hypercyclic operator whose direct sum T\oplus T is not hypercyclic. J. Oper. Theory 61(2), 369-380 (2009)
    • Furstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory 1(1), 1–49 (1967)
    • Grivaux, S.: Hypercyclic operators, mixing operators, and the bounded steps problem. J. Oper. Theory 54(1), 147-168 (2005)
    • Grosse-Erdmann, K.G.: Universal families and hypercyclic operators. Bull. Am. Math. Soc. 36(3), 345–381 (1999)
    • Grosse-Erdmann, K.G., Mortini, R.: Universal functions for composition operators with non-automorphic symbol. J. d’Analyse Math. 107(1), 355...
    • Grosse-Erdmann, K.G.: Peris A. Linear Chaos (Universitext). Springer, London (2011)
    • Kamali, Z., Yousefi, B.: Disjoint hypercyclicity of weighted composition operators. Proc.-Math. Sci. 125(4), 559–567 (2015)
    • Kostic, M.: {\cal{F} }-hypercyclic and disjoint {\cal{F} }-hypercyclic properties of binary relations over topological spaces. Math. Bohem....
    • Kostic, M.: {\cal{F} }-hypercyclic extensions and disjoint {\cal{F} }-hypercyclic extensions of binary relations over topological spaces....
    • Montes-Rodríguez, A.: A Birkhoff theorem for Riemann surfaces. Rocky Mt. J. Math. 28(2), 663–693 (1998)
    • Peris, A., Saldivia, L.: Syndetically hypercyclic operators. Integr. Equ. Oper. Theory 51(2), 275–281 (2005)
    • Remmert, R.: Funktionentheorie. Springer-Verlag, Berlin (1991)
    • Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)
    • Salas, H.N.: Dual disjoint hypercyclic operators. J. Math. Anal. Appl. 374(1), 106–117 (2011)
    • Shkarin, S.: A short proof of existence of disjoint hypercyclic operators. J. Math. Anal. Appl. 367(2), 713–715 (2010)
    • Wang, Y., Zhou, Z.H.: Disjoint hypercyclic weighted pseudo-shifts on Banach sequence spaces. Collectanea Math. 69(3), 437–449 (2018)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno