Ir al contenido

Documat


The moduli space of quasistable spin curves

  • Abreu, Alex [1] ; Pacini, Marco [1] ; Taboada, Danny [1]
    1. [1] Universidade Federal Fluminense

      Universidade Federal Fluminense

      Brasil

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 75, Fasc. 1, 2024, págs. 27-80
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00377-2
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study a compactification of the moduli space of theta characteristics, giving a modular interpretation of the geometric points and describing the boundary stratification. This space is different from the moduli space of spin curves. The modular description and the boundary stratification of the new compactification are encoded by a tropical moduli space. We show that this tropical moduli space is a refinement of the moduli space of spin tropical curves. We describe explicitly the induced decomposition of its cones.

  • Referencias bibliográficas
    • Abramovich, D., Jarvis, T.J.: Moduli of twisted spin curves. Proc. Am. Math. Soc. 131(3), 685–699 (2002)
    • Abreu, A., Pacini, M.: The universal tropical Jacobian and the skeleton of the Esteves’ universal Jacobian. Proc. London Math. Soc. 120(3),...
    • Abreu, A., Pacini, M.: The resolution of the universal Abel map via tropical geometry and applications. Adv. Math. 378 (2021)
    • Abreu, A., Andria, S., Pacini, M., Taboada, D.: A universal tropical Jacobian over M_g^{trop}. arXiv:1912.08675
    • Abramovich, D., Caporaso, L., Payne, S.: The tropicalization of the moduli space of curves. Annales Scientifiques del’ENS. 48(4)(4), 765–809...
    • Brannetti, S., Melo, M., Viviani, F.: On the tropical Torelli map. Adv. Math. 226(3), 2546–2586 (2011)
    • Caporaso, L.: A compactification of the universal Picard variety over the moduli space of stable curves. J. Am. Math. Soc. 7(3), 589–660 (1994)
    • Caporaso, L.: Compactifed Jacobians of Néron type Rend. Lincei Mat. Appl. 23, 213–227 (2012)
    • Caporaso, L., Casagrande, C., Cornalba, M.: Moduli of roots of line bundles on curves. Trans. Am. Math. Soc. 359, 3733–3768 (2007)
    • Caporaso, L., Christ, K.: Combinatorics of compactified universal Jacobians. Adv. Math. 346, 1091–1136 (2019)
    • Caporaso, L., Melo, M., Pacini, M.: The tropicalization of the moduli space of spin curves. Selecta Mathematica 26 (2020)
    • Caporaso, L., Melo, M., Pacini, M.: Tropical theta characteristics. ArXiv:2010.00894
    • Chan, M., Galatius, S., Payne, S.: Tropical curves, graph complexes, and top weight cohomology of M_g. J. Amer. Math. Soc. 34, 565–594 (2021)
    • Chan, M., Faber, C., Galatius, S., Payne, S.: The S_n-equivariant top weight Euler characteristic of M_{g,n}. arXiv:1904.06367
    • Chiodo, A.: Stable twisted curves and their r-spin structures. Ann. Inst. Fourier 58(5), 1635–1689 (2008)
    • Christ, K., Payne, S., Shen, J.: Compactified Jacobians as Mumford models. Preprint (2019), arXiv:1912.03653
    • Cornalba, M.: Moduli of curves and theta-characteristics. In: Lectures on Riemann Surfaces: Proceedings of the College on Riemann Surfaces,...
    • Esteves, E.: Compactifying the relative Jacobian over families of reduced curves. Trans. Amer. Math. Soc. 353, 3345–3095 (2001)
    • Esteves, E., Medeiros, N.: Limit canonical systems on curves with two components. Invent. Math. 149(2), 267–338 (2002)
    • Esteves, E., Pacini, M.: Semistable modifications of families of curves and compactified Jacobians. Ark. Mat. 54(1), 55–83 (2016)
    • Holmes, D., Molcho, S., Pandharipande, R., Pixton, A., Schmitt, J.: Logarithmic double ramification cycles. arXiv:2207.06778
    • Jarvis, T.J.: Torsion-free sheaves and moduli of generalized spin curves. Compos. Math. 110, 291–333 (1998)
    • Jarvis, T.J.: Geometry of the moduli of higher spin curves. Int. J. Math. 11(5), 637–663 (2000)
    • Kass, J., Pagani, N.: The stability space of compactified universal Jacobians. Trans. Am. Math. Soc. 372, 4851–4887 (2019)
    • Melo, M.: Compactifications of the universal Jacobian over curves with marked points. arXiv:1509.06177
    • Zharkov, I.: Tropical theta characteristics. Mirror symmetry and tropical geometry. Contemp. Math., 527, A.M.S., Providence, RI (2010), pp....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno