Ir al contenido

Documat


A note on the BMO and Calderón–Zygmund estimate

  • Lian, Yuanyuan [1] ; Zhang, Kai [1]
    1. [1] Shanghai Jiao Tong University

      Shanghai Jiao Tong University

      China

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 75, Fasc. 1, 2024, págs. 1-8
  • Idioma: inglés
  • DOI: 10.1007/s13348-022-00375-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this note, we give a simple proof of the pointwise BMO estimate for Poisson’s equation. Then the Calderón–Zygmund estimate follows by the interpolation and duality.

  • Referencias bibliográficas
    • Caffarelli, L.A., Peral, I.: On W^{1, p} estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1–21 (1998)
    • Caffarelli, L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. (2) 130(1), 189–213 (1989)
    • Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations, vol. 43. American Mathematical Society Colloquium Publications, American...
    • Calderon, A.P., Zygmund, A.: On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952)
    • Chen, Y.-Z., Wu, L.-C.: Second order elliptic equations and elliptic systems. In: Translations of Mathematical Monographs, vol. 174, American...
    • Figalli, A., Shahgholian, H.: A general class of free boundary problems for fully nonlinear parabolic equations. Ann. Mat. Pura Appl. (4)...
    • Giaquinta, M., Martinazzi, L.: An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, second ed.,...
    • Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin, Reprint...
    • Krylov, N.V.: Lectures on elliptic and parabolic equations in Sobolev spaces, Graduate Studies in Mathematics, Vol. 96. American Mathematical...
    • Li, C., Wu, L.: Pointwise regularity for fractional equations. J. Differ. Equ. 302, 1–36 (2021)
    • Lian, Y., Wang, L., Zhang, K.: Pointwise regularity for fully nonlinear elliptic equations in general forms (2020)
    • Lian, Y., Zhang, K.: Boundary pointwise C ^{1,\alpha } and C^{2,\alpha } regularity for fully nonlinear elliptic equations. J. Differ. Equ....
    • Peetre, J.: On convolution operators leaving L^{p,}\,^{\lambda } spaces invariant. Ann. Mat. Pura Appl. 4(72), 295–304 (1966)
    • Silvestre, L., Sirakov, B.: Boundary regularity for viscosity solutions of fully nonlinear elliptic equations. Commun. Partial Differ. Equ....
    • Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, Vol. 43, Princeton...
    • Wang, L.H.: A geometric approach to the Calderón–Zygmund estimates. Acta Math. Sin. (Engl. Ser.) 19(2), 381–396 (2003)
    • Wang, L.: On the regularity theory of fully nonlinear parabolic equations II. Commun. Pure Appl. Math. 45(2), 141–178 (1992)
    • Wu, Z., Yin, J., Wang, C.: Elliptic and Parabolic Equations. World Scientific Publishing Co. Pte. Ltd., Hackensack (2006)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno