Ir al contenido

Documat


Predicción de desgaste abrasivo y dureza superficial de partes impresas por tecnología SLA

  • Muñoz-Valverde, P. [1] ; Villena-López, O. [2] ; Mayorga-Ases, L. [3] ; Pérez-Salinas, CristianUnviersidad Técnica de AmbatoC. [2] ; Moya, D. [2]
    1. [1] Escuela Politécnica del Ejército

      Escuela Politécnica del Ejército

      Sangolqui, Ecuador

    2. [2] Universidad Técnica de Ambato

      Universidad Técnica de Ambato

      Ambato, Ecuador

    3. [3] Unviersidad Técnica de Ambato
  • Localización: Ingenius: Revista de Ciencia y Tecnología, ISSN 1390-650X, ISSN-e 1390-860X, Nº. 31, 2024 (Ejemplar dedicado a: january-june), págs. 19-31
  • Idioma: español
  • DOI: 10.17163/ings.n31.2024.02
  • Títulos paralelos:
    • Prediction of abrasive wear and surface hardness of printed parts by SLA technology
  • Enlaces
  • Resumen
    • español

      En el presente estudio se realizó una predicción del deterioro de la dureza y el desgaste abrasivo a través de una red neuronal utilizando inteligencia artificial sobre un material impreso en SLA. Esta investigación tiene como objetivo predecir las propiedades mecánicas de resistencia al desgaste y dureza superficial de piezas fabricadas mediante impresión por estereolitografía (SLA). Para realizar los experimentos se utilizó un diseño factorial de dos niveles o DOE factorial completo y así asociar los parámetros peculiares (orientación de impresión, tiempo de curado, altura de la capa). Las propiedades mecánicas fueron evaluadas según normativas ASTM, con el objetivo de obtener datos de alimentación y validación de las predicciones del índice de desgaste Taber y la dureza empleando una red neuronal artificial. Los resultados experimentales concuerdan con los datos medidos con errores de predicción satisfactorios con un error cuadrático medio (MSE) de 0,01 correspondiente al desgaste abrasivo utilizando la resina transparente y un error absoluto medio (MSE) de 0,09 con un R2 de 0,76. La predicción con la red neuronal tiene un error cuadrático medio (MSE) de 2.47 perteneciente al desgaste abrasivo utilizando la resina resistente y un error absoluto medio (MSE) de 14,3 con un R2 de 0,97. Se demostró que la precisión de la predicción es razonable, y que la red tiene potencial para mejorar si se pudiera ampliar la base de datos experimental para entrenar la red. Por lo tanto, las propiedades mecánicas de desgaste y dureza se pueden predecir, adecuadamente, con una RNA.

    • English

      In the present study, a prediction of hardness deterioration and abrasive wear was performed through a neural network using artificial intelligence on a material printed in SLA. This article aims to predict the mechanical properties, wear resistance and surface hardness of parts manufactured by SLA stereolithography printing. A full factorial DOE was used to associate the peculiar parameters (print orientation, cure time, layer height) to perform experiments. The mechanical properties were evaluated according to ASTM regulations, with the objective of obtaining feeding data and validation of the predictions of the Taber Wear Index and hardness using an artificial neural network. The experimental results are in good agreement with the measured data with satisfactory prediction errors with a mean square error (MSE) of 0.01 corresponding to abrasive wear using the clear resin and a mean absolute error (MSE) of 0.09 with an R2 of 0.756, the prediction with the neural network with a mean square error (MSE) of 2.47 corresponding to abrasive wear using the tough resin and a mean absolute error (MSE) of 14.3 with an R2 of 0.97. It was shown that the accuracy of the prediction is reasonable, and the network has the potential to be improved if the experimental database for training the network could be expanded. Therefore, wear and hardness mechanical properties can be predicted appropriately with an ANN.

  • Referencias bibliográficas
    • [1] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods,...
    • [2] A. Pérez, E. Romero, and A. González, “Three-dimensional printing in helthcare,” Rev. Mex. Ing. Biomédica, vol. 42, no. 2, pp. 32–48,...
    • [3] T. Wohlers, “Rapid Prototyping & Tooling State of the Industry Annual Worldwide Progress Report Wohlers Report,” 2001. [Online]. Available:...
    • [4] E. J. Hurst, “3D Printing in Healthcare: Emerging Applications,” J. Hosp. Librariansh., vol. 16, no. 3, pp. 255–267, Jul. 2016, doi: 10.1080/15323269.2016.1188042.
    • [5] S. Mishra, “Application of 3D printing in medicine,” Indian Heart J., vol. 68, no. 1, pp. 108–109, Jan. 2016, doi: 10.1016/J.IHJ.2016.01.009.
    • [6] J. W. Stansbury and M. J. Idacavage, “3D printing with polymers: Challenges among expanding options and opportunities,” Dent. Mater.,...
    • [7] A. C. Uzcategui, A. Muralidharan, V. L. Ferguson, S. J. Bryant, and R. R. McLeod, “Understanding and Improving Mechanical Properties in...
    • [8] C. Mendes-Felipe, D. Patrocinio, J. M. Laza, L. Ruiz-Rubio, and J. L. Vilas-Vilela, “Evaluation of postcuring process on the thermal and...
    • [9] A. Bardelcik, S. Yang, F. Alderson, and A. Gadsden, “The effect of wash treatment on the mechanical properties and energy absorption potential...
    • [10] Z. Jiang, Z. Zhang, and K. Friedrich, “Prediction on wear properties of polymer composites with artificial neural networks,” Compos....
    • [11] A. Tura, H. Lemu, H. Mamo, and A. Santhosh, “Prediction of tensile strength in fused deposition modeling process using artificial neural...
    • [12] M. Tayyab, S. Ahmad, M. J. Akhtar, P. M. Sathikh, and R. M. Singari, “Prediction of mechanical properties for acrylonitrile-butadiene-styrene...
    • [13] U. S. Tewari, S. K. Sharma, and P. Vasudevan, Polymer tribology, vol. C29, no. 1. 1989.
    • [14] B. Gupta, “3 - Friction and wear mechanism of polymers, their composites and nanocomposites,” Tribol. Polym. Polym. Compos. Polym. Nanocomposites,...
    • [15] E. O. Ezugwu, S. J. Arthur, and E. L. Hines, “Tool-wear prediction using artificial neural networks,” J. Mater. Process. Tech., vol....
    • [16] C. F. Pérez-Salinas, A. del Olmo, and L. N. López de Lacalle, “Estimation of Drag Finishing Abrasive Effect for Cutting Edge Preparation...
    • [17] G. Radhakrishnan, C. Kesavan, V. Ramesh, and T. Anandan, “Application of artificial neural network (ANN) for predicting the wear behaviour...
    • [18] B. A. Shuvho, M. A. Chowdhury, and U. K. Debnath, “Analysis of Artificial Neural Network for Predicting Erosive Wear of Nylon-12 Polymer,”...
    • [19] A. M and C. D, “Journal De Physique. IV: JP - Preface,” J. Phys. IV JP, vol. 11, no. 8, p. 1, 2001.
    • [20] FormLabs, “Tough Tough Resin for Rugged Prototyping,” 2018.
    • [21] FormLabs, “Standard Materials for High-Resolution Rapid Prototyping,” 2017.
    • [22] B. Sen-Crowe, M. Sutherland, M. McKenney, and A. Elkbuli, “A Closer Look Into Global Hospital Beds Capacity and Resource Shortages During...
    • [23] S. V, “4 - Material Requirements for Plastics Used in Medical Devices,” Plast. Med. Devices, pp. 66–112, 2022, doi: https://doi.org/10.1016/B978-0-323-85126-8.00008-4.
    • [24] P. Jacobs, “Fundamentals of Stereolithography,” 3D Syst. Inc., 1992.
    • [25] J. H. Lee, R. K. Prud’homme, and I. A. Aksay, “Cure depth in photopolymerization: Experiments and theory,” Mater. Res. Soc., vol. 16,...
    • [26] A. El-Aziz, D. Saber, and A. Megahed, “Investigation and Prediction of Abrasive Wear Rate of Heat-Treated HCCIs with Different Cr/C Ratios...
    • [27] A. Sagbas, F. Kahraman, and U. Esme, “Modeling and predicting abrasive wear behaviour of poly oxy methylenes using response surface methodolgy...
    • [28] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,”...
    • [29] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties of neural machine translation: Encoder–decoder approaches,”...
    • [30] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning (still) requires rethinking generalization,” Commun....
    • [31] Y. Zeng, K. Jiang, and J. Chen, “Automatic seismic salt interpretation with deep convolutional neural networks,” Proc. 2019 3rd Int....
    • [32] M. Hawryluk and B. Mrzyglod, “A system of analysis and prediction of the loss of forging tool material applying artificial neural networks,”...
    • [33] S. Sardar, S. Dey, and D. Das, “Modelling of tribological responses of composites using integrated ANN-GA technique,” J. Compos. Mater.,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno