Ir al contenido

Documat


Quito air quality modeling and prediction using meteorological and pollution data

  • Martín Almeida [1] ; Patricia Acosta-Vargas [1] ; Mario González [1]
    1. [1] Universidad de las Américas, Quito, Ecuador
  • Localización: RISTI: Revista Ibérica de Sistemas e Tecnologias de Informação, ISSN-e 1646-9895, Nº. Extra 32, 2020, págs. 151-163
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This work describes the process of design, implementation, and results of different Machine Learning techniques to understand and predict meteorological data from the metropolitan area of Quito, Ecuador. Hourly data has been collected from 2004 to 2018 by the Environment Secretary of Quito in nine stations around the district. It focuses mainly on linear regression algorithms, time series analysis, and interpolation spatial analysis. During the definition of graphs to be implemented in the AirQ2 application, an analysis process was carried out on the contribution of each type of graph to obtain a better result when constructing prediction models on air pollution in Quito. Each graphic described here provides specific information and provides a guide to learn more about the different pollutants and stations of the collected data, as well as their contribution to the construction of the models’ prediction.

  • Referencias bibliográficas
    • Zalakeviciute, R., Rybarczyk, Y., Granda-Albuja, M. G., Suarez, M. V. D., & Alexandrino, K. (2020). Chemical characterization of urban...
    • Zalakeviciute, R., Rybarczyk, Y., López-Villada, J., & Suarez, M. V. D. (2018). Quantifying decade-long effects of fuel and traffic regulations...
    • Naranjo, R., Almeida, M., Zalakeviciute, R., Rybarczyk, Y., & González, M. (2019, April). AirQ2: Quito Air Quality Monitoring and Visualization...
    • Kleine Deters, J., Zalakeviciute, R., Gonzalez, M., & Rybarczyk, Y. (2017). Modeling PM2. 5 urban pollution using machine learning and...
    • R-project.org. (2019). R: What is R?. [Online] recovered from https://www.r-project. org/about.html [Accessed 11 Feb. 2019].
    • Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan McPherson (2019). shiny: Web Application Framework for R. R package version 1.4.0....
    • Rybarczyk, Y., & Zalakeviciute, R. (2018). Machine learning approaches for outdoor air quality modelling: A systematic review. Applied...
    • Ghojogh, B., Samad, M. N., Mashhadi, S. A., Kapoor, T., Ali, W., Karray, F., & Crowley, M. (2019). Feature selection and feature extraction...
    • Bernard, Simon & Adam, Sébastien & Heutte, Laurent. (2012). Dynamic Random Forests. Pattern Recognition Letters. 33. 1580-1586. 10.1016...
    • De Mesnard, L. (2013). Pollution models and inverse distance weighting: Some critical remarks. Computers & Geosciences, 52, 459-469.
    • Krishan, M., Jha, S., Das, J., Singh, A., Goyal, M. K., & Sekar, C. (2019). Air quality modelling using long short-term memory (LSTM)...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno