Ir al contenido

Documat


Hyers–Ulam Stability of a Second-Order Finite Difference Scheme Using a Diamond-˛ Difference Operator

  • Autores: Douglas R. Anderson, Gregory M. Tanner
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 2, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-023-00927-4
  • Enlaces
  • Resumen
    • We establish the Hyers–Ulam stability of a second-order finite difference scheme using a diamond-α difference operator for second-order non-homogeneous linear differential equations with constant coefficients. Hyers–Ulam stability constants and best stability constants are determined for stability regions in the parameter space. In an application of our results, we compare our difference scheme with the more common centereddifference scheme, as an approximation to secord-order differential equations.

  • Referencias bibliográficas
    • 1. Anderson, D.R.: The discrete diamond–alpha imaginary ellipse and Hyers–Ulam stability. Int. J. of Differ. Equ. 14(1), 25–38 (2019)
    • 2. Anderson, D.R., Onitsuka, M.: Hyers-Ulam stability of a discrete diamond-alpha derivative equation. In: Anastassiou, G., Rassias, J. (eds.)...
    • 3. Anderson, D.R., Onitsuka, M.: Equilibrium stability for the discrete diamond–alpha operator. Bull. Malays. Math. Sci. Soc. 46, 15 (2023)....
    • 4. Baias, A.R., Popa, D.: On the best Ulam constant of a higher order linear difference equation. Bull. Sci. Math. 166, 102928 (2021). https://doi.org/10.1016/j.bulsci.2020.102928
    • 5. Baias, A.R., Popa, D.: On Ulam stability of a linear difference equation in Banach spaces. Bull. Malays. Math. Sci. Soc. 43, 1357–1371...
    • 6. Bora, S.N., Shankar, M.: Ulam–Hyers stability of second-order convergent finite difference scheme for first- and second-order nonhomogeneous...
    • 7. Brzde˛k, J., Popa, D., Ra¸sa, I., Xu, B.: Ulam Stability of Operators. Academic Press: Amsterdam (2018). https://doi.org/10.1016/C2015-0-06292-X
    • 8. Brzde˛k, J., Popa, J., Xu, B.: Remarks on stability of linear recurrence of higher order. Appl. Math. Lett. 23, 1459–1463 (2010). https://doi.org/10.1016/j.aml.2010.08.010
    • 9. Kayar, Z., Kaymakçalan, B.: Applications of the novel diamond alpha Hardy–Copson type dynamic inequalities to half linear difference equations....
    • 10. Kayar, Z., Kaymakçalan, B.: Novel diamond alpha Bennett–Leindler type dynamic inequalities and their applications. Bull. Malays. Math....
    • 11. Kayar, Z., Kaymakçalan, B., Pelen, N.N.: Diamond alpha Bennett–Leindler type dynamic inequalities and their applications. Math. Methods...
    • 12. Popa, D.: Hyers–Ulam stability of the linear recurrence with constant coefficients. Adv. Differ. Equ. 407076, 101–107 (2005). https://doi.org/10.1155/ADE.2005.101
    • 13. Rassias, Th.M.: On the stability of linear mapping in Banach spaces. Proc. Am. Math. Soc. 72(2), 297–300 (1978). https://doi.org/10.2307/2042795
    • 14. Rogers, J.W., Jr., Sheng, Q.: Notes on the diamond-α dynamic derivative on time scales. J. Math. Anal. Appl. 326(1), 228–241 (2007). https://doi.org/10.1016/j.jmaa.2006.03.004
    • 15. Sheng, Q., Fadag, M., Henderson, J., Davis, J.M.: An exploration of combined dynamic derivatives on time scales and their applications....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno